000 04513nla2a2200505 4500
001 660233
005 20231030041658.0
035 _a(RuTPU)RU\TPU\network\29304
035 _aRU\TPU\network\29294
090 _a660233
100 _a20190515a2018 k y0engy50 ba
101 0 _aeng
102 _aCH
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aSten Score Method And Cluster Analysis: Identifying Respondents Vulnerable To Drug Abuse
_fN. A. Lukianova, Yu. B. Burkatovskaya, E. V. Fell
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 788-789 (17 tit.)]
330 _aIn this article, the authors assess the methodological reliability of big data processing in sociological research. The authors compare sten score method and cluster analysis as methods of processing the results of socio-psychological tests aimed at identifying groups of young people potentially vulnerable to drug addiction. The survey was conducted in eight universities in a city in Siberia with a large student population where 22884 students aged from 18 to 25 were questioned. First, the obtained results were processed by using the sten score method. Then, cluster analysis was conducted to define a high-risk group of students having a propensity for drug consumption. Advantages and disadvantages of the two methods for processing a large sample of data are compared. The results of this comparison demonstrate that the cluster analysis method is the most appropriate method for this type of research as it produces statistically correct data. The use of cluster analysis makes it possible to work with any type of information, both qualitative and qualitative data. On the other hand, the sten scores method can only be applied in certain conditions, i.e. where the original distribution resembles a normal distribution; where some theoretical basis to expect normal distribution exists, and where there is certainty that the normalization group is sufficiently large and representative to be a true reflection of the population.
461 0 _0(RuTPU)RU\TPU\network\11959
_tThe European Proceedings of Social & Behavioural Sciences (EpSBS)
463 0 _0(RuTPU)RU\TPU\network\29259
_tVol. 35 : Research Paradigms Transformation in Social Sciences (RPTSS 2017)
_oInternational Conference, 18-21 May 2017, Tomsk, Russia
_o[proceedings]
_fNational Research Tomsk Polytechnic University (TPU) ; eds. I. B. Ardashkin [et al.]
_v[P. 779-789]
_d2018
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _asten score method
610 1 _acluster analysis
610 1 _adrug use
610 1 _adrug addiction
610 1 _asociological research
610 1 _astatistical information
610 1 _aкластерный анализ
610 1 _aнаркомания
610 1 _aсоциологические исследования
610 1 _aстатистическая информация
700 1 _aLukianova
_bN. A.
_cspecialist in the field of psychology and law
_cProfessor of Tomsk Polytechnic University, Doctor of philosophy sciences
_f1971-
_gNatalia Aleksandrovna
_2stltpush
_3(RuTPU)RU\TPU\pers\33131
701 1 _aBurkatovskaya
_bYu. B.
_cmathematician
_cassociate Professor of Tomsk Polytechnic University, candidate of physico-mathematical Sciences
_f1973-
_gYuliya Borisovna
_2stltpush
_3(RuTPU)RU\TPU\pers\36259
701 1 _aFell
_bE. V.
_cspecialist in the field of law
_cAssociate Professor of Tomsk Polytechnic University
_f1975-
_gElena Vladimirovna
_2stltpush
_3(RuTPU)RU\TPU\pers\33614
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bШкола базовой инженерной подготовки
_bОтделение социально-гуманитарных наук
_h8033
_2stltpush
_3(RuTPU)RU\TPU\col\23512
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение информационных технологий
_h7951
_2stltpush
_3(RuTPU)RU\TPU\col\23515
801 2 _aRU
_b63413507
_c20190517
_gRCR
856 4 _uhttp://dx.doi.org/10.15405/epsbs.2018.02.92
856 4 _uhttp://earchive.tpu.ru/handle/11683/53272
942 _cCF