000 | 04170nlm1a2200457 4500 | ||
---|---|---|---|
001 | 660482 | ||
005 | 20231030041711.0 | ||
035 | _a(RuTPU)RU\TPU\network\29932 | ||
035 | _aRU\TPU\network\28812 | ||
090 | _a660482 | ||
100 | _a20190704a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aCharacteristics of the Child-Droplets Emerged by Micro-Explosion of the Heterogeneous Droplets Exposed to Conductive, Convective and Radiative Heating _fD. V. Antonov, M. V. Piskunov, P. A. Strizhak |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aA study provides for the experimental characteristics of the fragmentation process of the heterogeneous droplets during a strong heating. Among such characteristics are a number, a size, namely, mean, minimum and maximum one, and a total surface area of the child-droplets emerged. We consider three schemes of heating corresponding to convective, conductive and radiative heat transfer. Experiments are carried out using the suspension and emulsion droplets as well as the droplets of two immiscible fluids. The graphite particles are utilized as the solid admixtures to water; diesel is applied as a liquid combustible additive. The effect of heat transfer, concentrations and a type of the admixtures on the fragmentation characteristics is explored. Temperature ranges (100–650 °C) and heat fluxes (4–150 kW/m2) are chosen according to applications, namely, fuel technologies, contact heat exchangers, thermal treatment of liquids, fire extinguishing, etc. The findings are important to develop the technologies based on a secondary atomization of the droplets during overheating and boiling. The results of the conductive heating experiments define the optimum substrate temperatures ensuring an enhanced micro-explosion of the droplets of different composition. The radiative heating is characterized by a strong droplet breakup leading to a greater number of the child-droplets as compared to the conductive and convective one. The conclusions contain future ways of developing the study. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tMicrogravity Science and Technology | ||
463 |
_tVol. 31, iss. 5 _v[P. 541-555] _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _asuspension | |
610 | 1 | _aemulsion | |
610 | 1 | _aimmiscible fluid | |
610 | 1 | _amicro-explosion | |
610 | 1 | _aheat transfer | |
610 | 1 | _achild-droplet | |
610 | 1 | _aнесмешивающиеся жидкости | |
610 | 1 | _aтеплопередача | |
700 | 1 |
_aAntonov _bD. V. _cspecialist in the field of heat and power engineering _cResearch Engineer of Tomsk Polytechnic University _f1996- _gDmitry Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\46666 |
|
701 | 1 |
_aPiskunov _bM. V. _cspecialist in the field of thermal engineering _cengineer of Tomsk Polytechnic University _f1991- _gMaksim Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\34151 |
|
701 | 1 |
_aStrizhak _bP. A. _cSpecialist in the field of heat power energy _cDoctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU) _f1985- _gPavel Alexandrovich _2stltpush _3(RuTPU)RU\TPU\pers\30871 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) _h8025 _2stltpush _3(RuTPU)RU\TPU\col\23504 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20201119 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1007/s12217-019-9705-2 | |
942 | _cCF |