000 04170nlm1a2200457 4500
001 660482
005 20231030041711.0
035 _a(RuTPU)RU\TPU\network\29932
035 _aRU\TPU\network\28812
090 _a660482
100 _a20190704a2019 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aCharacteristics of the Child-Droplets Emerged by Micro-Explosion of the Heterogeneous Droplets Exposed to Conductive, Convective and Radiative Heating
_fD. V. Antonov, M. V. Piskunov, P. A. Strizhak
203 _aText
_celectronic
300 _aTitle screen
330 _aA study provides for the experimental characteristics of the fragmentation process of the heterogeneous droplets during a strong heating. Among such characteristics are a number, a size, namely, mean, minimum and maximum one, and a total surface area of the child-droplets emerged. We consider three schemes of heating corresponding to convective, conductive and radiative heat transfer. Experiments are carried out using the suspension and emulsion droplets as well as the droplets of two immiscible fluids. The graphite particles are utilized as the solid admixtures to water; diesel is applied as a liquid combustible additive. The effect of heat transfer, concentrations and a type of the admixtures on the fragmentation characteristics is explored. Temperature ranges (100–650 °C) and heat fluxes (4–150 kW/m2) are chosen according to applications, namely, fuel technologies, contact heat exchangers, thermal treatment of liquids, fire extinguishing, etc. The findings are important to develop the technologies based on a secondary atomization of the droplets during overheating and boiling. The results of the conductive heating experiments define the optimum substrate temperatures ensuring an enhanced micro-explosion of the droplets of different composition. The radiative heating is characterized by a strong droplet breakup leading to a greater number of the child-droplets as compared to the conductive and convective one. The conclusions contain future ways of developing the study.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tMicrogravity Science and Technology
463 _tVol. 31, iss. 5
_v[P. 541-555]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _asuspension
610 1 _aemulsion
610 1 _aimmiscible fluid
610 1 _amicro-explosion
610 1 _aheat transfer
610 1 _achild-droplet
610 1 _aнесмешивающиеся жидкости
610 1 _aтеплопередача
700 1 _aAntonov
_bD. V.
_cspecialist in the field of heat and power engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1996-
_gDmitry Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\46666
701 1 _aPiskunov
_bM. V.
_cspecialist in the field of thermal engineering
_cengineer of Tomsk Polytechnic University
_f1991-
_gMaksim Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34151
701 1 _aStrizhak
_bP. A.
_cSpecialist in the field of heat power energy
_cDoctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)
_f1985-
_gPavel Alexandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\30871
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа энергетики
_bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
_h8025
_2stltpush
_3(RuTPU)RU\TPU\col\23504
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20201119
_gRCR
856 4 _uhttps://doi.org/10.1007/s12217-019-9705-2
942 _cCF