000 05119nlm1a2200577 4500
001 660500
005 20231030041712.0
035 _a(RuTPU)RU\TPU\network\29950
035 _aRU\TPU\network\29077
090 _a660500
100 _a20190705a2019 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aPiezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation
_fR. V. Chernozem [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aElaboration of novel biocomposites providing simultaneously both biodegradability and stimulated bone tissue repair is essential for regenerative medicine. In particular, piezoelectric biocomposites are attractive because of a possibility to electrically stimulate cell response. In the present study, novel CaCO3-mineralized piezoelectric biodegradable scaffolds based on two polymers, poly[(R)3-hydroxybutyrate] (PHB) and poly[3-hydroxybutyrate-co-3-hydroxyvalerate] (PHBV), are presented. Mineralization of the scaffold surface is carried out by the in situ synthesis of CaCO3 in the vaterite and calcite polymorphs using ultrasound (U/S). Comparative characterization of PHB and PHBV scaffolds demonstrated an impact of the porosity and surface charge on the mineralization in a dynamic mechanical system, as no essential distinction was observed in wettability, structure, and surface chemical compositions. A significantly higher (4.3 times) piezoelectric charge and a higher porosity (~15%) lead to a more homogenous CaCO3 growth in 3-D fibrous structures and result in a two times higher relative mass increase for PHB scaffolds compared to that for PHBV. This also increases the local ion concentration incurred upon mineralization under U/S-generated dynamic mechanical conditions.
330 _aThe modification of the wettability for PHB and PHBV scaffolds from hydrophobic (nonmineralized fibers) to superhydrophilic (mineralized fibers) led to a pronounced apatite-forming behavior of scaffolds in a simulated body fluid. In turn, this results in the formation of a dense monolayer of well-distributed and proliferated osteoblast cells along the fibers. CaCO3-mineralized PHBV surfaces had a higher osteoblast cell adhesion and proliferation assigned to a higher amount of CaCO3 on the surface compared to that on PHB scaffolds, as incurred from micro-computed tomography (µCT). Importantly, a cell viability study confirmed biocompatibility of all the scaffolds. Thus, hybrid biocomposites based on the piezoelectric PHB polymers represent an effective scaffold platform functionalized by an inorganic phase and stimulating the growth of the bone tissue.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tACS Applied Materials and Interfaces
463 _tVol. 21, iss. 11
_v[P. 19522-19533]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _ascaffold piezoelectric
610 1 _acalcium carbonate
610 1 _abone tissue engineering
610 1 _amineralization
610 1 _aкарбонат кальция
610 1 _aинженерия
610 1 _aкостные ткани
610 1 _aминерализация
701 1 _aChernozem
_bR. V.
_cphysicist
_claboratory assistant of Tomsk Polytechnic University
_f1992-
_gRoman Viktorovich
_2stltpush
_3(RuTPU)RU\TPU\pers\36450
701 1 _aSurmeneva
_bM. A.
_cspecialist in the field of material science
_cengineer-researcher of Tomsk Polytechnic University, Associate Scientist
_f1984-
_gMaria Alexandrovna
_2stltpush
_3(RuTPU)RU\TPU\pers\31894
701 1 _aShkarina
_bS. N.
_gSvetlana Nikolaevna
701 1 _aLoza
_bK.
_gKaterina
701 1 _aEpple
_bM.
_gMattias
701 1 _aUlbrikht
_bM.
_gMattias
701 1 _aSetsiliya
_bA.
_gAndzhelika
701 1 _aKrauze
_bB.
_gBarbel
701 1 _aBaumbach
_bT.
_gTilo
701 1 _aAbalymov
_bA. A.
_gAnatoly Anatoljevich
701 1 _aParakkhonsky
_bB. V.
_gBogdan Vladislavovich
701 1 _aSkirtach
_bA. G.
_gAndrey Gennadjevich
701 1 _aSurmenev
_bR. A.
_cphysicist
_cAssociate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences
_f1982-
_gRoman Anatolievich
_2stltpush
_3(RuTPU)RU\TPU\pers\31885
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_bНаучно-исследовательский центр "Физическое материаловедение и композитные материалы"
_h8209
_2stltpush
_3(RuTPU)RU\TPU\col\24957
801 2 _aRU
_b63413507
_c20190705
_gRCR
856 4 _uhttps://doi.org/10.1021/acsami.9b04936
942 _cCF