000 | 05119nlm1a2200577 4500 | ||
---|---|---|---|
001 | 660500 | ||
005 | 20231030041712.0 | ||
035 | _a(RuTPU)RU\TPU\network\29950 | ||
035 | _aRU\TPU\network\29077 | ||
090 | _a660500 | ||
100 | _a20190705a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aPiezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation _fR. V. Chernozem [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aElaboration of novel biocomposites providing simultaneously both biodegradability and stimulated bone tissue repair is essential for regenerative medicine. In particular, piezoelectric biocomposites are attractive because of a possibility to electrically stimulate cell response. In the present study, novel CaCO3-mineralized piezoelectric biodegradable scaffolds based on two polymers, poly[(R)3-hydroxybutyrate] (PHB) and poly[3-hydroxybutyrate-co-3-hydroxyvalerate] (PHBV), are presented. Mineralization of the scaffold surface is carried out by the in situ synthesis of CaCO3 in the vaterite and calcite polymorphs using ultrasound (U/S). Comparative characterization of PHB and PHBV scaffolds demonstrated an impact of the porosity and surface charge on the mineralization in a dynamic mechanical system, as no essential distinction was observed in wettability, structure, and surface chemical compositions. A significantly higher (4.3 times) piezoelectric charge and a higher porosity (~15%) lead to a more homogenous CaCO3 growth in 3-D fibrous structures and result in a two times higher relative mass increase for PHB scaffolds compared to that for PHBV. This also increases the local ion concentration incurred upon mineralization under U/S-generated dynamic mechanical conditions. | ||
330 | _aThe modification of the wettability for PHB and PHBV scaffolds from hydrophobic (nonmineralized fibers) to superhydrophilic (mineralized fibers) led to a pronounced apatite-forming behavior of scaffolds in a simulated body fluid. In turn, this results in the formation of a dense monolayer of well-distributed and proliferated osteoblast cells along the fibers. CaCO3-mineralized PHBV surfaces had a higher osteoblast cell adhesion and proliferation assigned to a higher amount of CaCO3 on the surface compared to that on PHB scaffolds, as incurred from micro-computed tomography (µCT). Importantly, a cell viability study confirmed biocompatibility of all the scaffolds. Thus, hybrid biocomposites based on the piezoelectric PHB polymers represent an effective scaffold platform functionalized by an inorganic phase and stimulating the growth of the bone tissue. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tACS Applied Materials and Interfaces | ||
463 |
_tVol. 21, iss. 11 _v[P. 19522-19533] _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _ascaffold piezoelectric | |
610 | 1 | _acalcium carbonate | |
610 | 1 | _abone tissue engineering | |
610 | 1 | _amineralization | |
610 | 1 | _aкарбонат кальция | |
610 | 1 | _aинженерия | |
610 | 1 | _aкостные ткани | |
610 | 1 | _aминерализация | |
701 | 1 |
_aChernozem _bR. V. _cphysicist _claboratory assistant of Tomsk Polytechnic University _f1992- _gRoman Viktorovich _2stltpush _3(RuTPU)RU\TPU\pers\36450 |
|
701 | 1 |
_aSurmeneva _bM. A. _cspecialist in the field of material science _cengineer-researcher of Tomsk Polytechnic University, Associate Scientist _f1984- _gMaria Alexandrovna _2stltpush _3(RuTPU)RU\TPU\pers\31894 |
|
701 | 1 |
_aShkarina _bS. N. _gSvetlana Nikolaevna |
|
701 | 1 |
_aLoza _bK. _gKaterina |
|
701 | 1 |
_aEpple _bM. _gMattias |
|
701 | 1 |
_aUlbrikht _bM. _gMattias |
|
701 | 1 |
_aSetsiliya _bA. _gAndzhelika |
|
701 | 1 |
_aKrauze _bB. _gBarbel |
|
701 | 1 |
_aBaumbach _bT. _gTilo |
|
701 | 1 |
_aAbalymov _bA. A. _gAnatoly Anatoljevich |
|
701 | 1 |
_aParakkhonsky _bB. V. _gBogdan Vladislavovich |
|
701 | 1 |
_aSkirtach _bA. G. _gAndrey Gennadjevich |
|
701 | 1 |
_aSurmenev _bR. A. _cphysicist _cAssociate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences _f1982- _gRoman Anatolievich _2stltpush _3(RuTPU)RU\TPU\pers\31885 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _bНаучно-исследовательский центр "Физическое материаловедение и композитные материалы" _h8209 _2stltpush _3(RuTPU)RU\TPU\col\24957 |
801 | 2 |
_aRU _b63413507 _c20190705 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1021/acsami.9b04936 | |
942 | _cCF |