000 03986nlm1a2200469 4500
001 660507
005 20231030041712.0
035 _a(RuTPU)RU\TPU\network\29957
035 _aRU\TPU\network\22211
090 _a660507
100 _a20190705a2019 k y0engy50 ba
101 0 _aeng
102 _aGB
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aOxidation of a wood extractive betulin to biologically active oxo-derivatives using supported gold catalysts
_fE. N. Kolobova [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 60 tit.]
330 _aBetulin (90–94%) was extracted from birch with a non-polar solvent and recrystallized from 2-propanol. Liquid-phase oxidation of betulin aimed at obtaining its biologically active oxo-derivatives (betulone, betulonic and betulinic aldehydes), exhibiting e.g. antitumor, anti-inflammatory, antiparasitic, anticancer and anti-HIV properties, was demonstrated for the first time over gold-based catalysts. Gold was deposited on pristine TiO2 and the same support modified with ceria and lanthana, followed by pretreatment with a H2 or O2 atmosphere. The catalysts were characterized by XRD, BET, ICP, TEM, XPS, DRIFT CO, TPD of NH3 and CO2 methods. The nature of the support, type of modification and the pretreatment atmosphere through the metal–support interactions significantly influenced the average particle size of gold, its distribution and the electronic state of gold, as well as the acid–base properties and, thereby, the catalytic performance (activity and selectivity) in betulin oxidation. Au/La2O3/TiO2 pretreated in H2 displayed the highest catalytic activity in betulin oxidation among the studied catalysts with selectivities to betulone, betulonic and betulinic aldehydes of 42, 32 and 27%, respectively, at 69% conversion. Side reactions resulting in oligomerization/polymerization products occurred on the catalyst surface with the participation of strong acid sites, diminishing the yield of the desired compounds. The latter was improved by adding hydrotalcite with the basic properties to the reaction mixture containing the catalyst. Kinetic modelling through numerical data fitting was performed to quantify the impact of such side reactions and determine the values of rate constants.
461 _tGreen Chemistry
463 _tVol. 21, iss. 14
_v[P. 3370-3382]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aокисление
610 1 _aбетулин
610 1 _aоксосоединения
701 1 _aKolobova
_bE. N.
_cChemical Engineer
_cdesign engineer of Tomsk Polytechnic University
_f1989-
_gEkaterina Nikolaevna
_2stltpush
_3(RuTPU)RU\TPU\pers\34488
701 1 _aPakrieva
_bE. G.
_cChemical Engineer
_cEngineer of Tomsk Polytechnic University
_f1989-
_gEkaterina Germanovna
_2stltpush
_3(RuTPU)RU\TPU\pers\33273
701 1 _aCarabineiro
_bS. S. A.
_gSonia
701 1 _aBogdanchikova
_bN.
_gNina
701 1 _aKharlanov
_bA. N.
_gAndrey
701 1 _aKazantsev
_bS. O.
_cspecialist in the field of material science
_cengineer of Tomsk Polytechnic University
_f1991-
_gSergey Olegovich
_2stltpush
_3(RuTPU)RU\TPU\pers\35794
701 1 _aHemming
_bJ.
_gJarl
701 1 _aArvela
_bP. M.
_gPдivi Mдki
701 1 _aPestryakov
_bA. N.
_cChemist
_cProfessor of Tomsk Polytechnic University, Doctor of Chemical Science
_f1963-
_gAleksey Nikolaevich
_2stltpush
_3(RuTPU)RU\TPU\pers\30471
701 1 _aMurzin
_bD. Yu.
_gDmitry
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий (ИШХБМТ)
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
801 2 _aRU
_b63413507
_c20190705
_gRCR
856 4 _uhttps://doi.org/10.1039/C9GC00949C
942 _cCF