000 | 03594nlm1a2200493 4500 | ||
---|---|---|---|
001 | 660510 | ||
005 | 20231030041712.0 | ||
035 | _a(RuTPU)RU\TPU\network\29960 | ||
035 | _aRU\TPU\network\28016 | ||
090 | _a660510 | ||
100 | _a20190705a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aModeling the multistage process of the linear alkylbenzene sulfonic acid manufacturing _fI. O. Dolganova [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aLinear alkylbenzene sulfonic acid (ASA) is used to produce industrial and domestic synthetic detergents and is obtained via a multistage technology. Unsteady mathematical models were developed for all technological stages. With use of the developed models we studied how the modes in the dehydrogenation reactor influence the product quality and yield. It was found that increase in the hydrogen/feedstock ratio in the dehydrogenation reactor from 6 to 8 mol/mol decreases the outlet dienes concentration from 0.57 to 0.46%wt. This reduces the amount of heavy aromatic compounds (HAR) formed in the alkylation reactor, as well as the optimal flow rate of alkylation HF catalyst to regeneration from 4.5 to 4.1 m3/h. The decrease of the hydrogen/feedstock ratio in the dehydrogenation reactor from 6.5 to 6 mol/mol intensifies the highly viscous component accumulation in the sulfonation reactor, reducing the period between the reactor washings from 13 to 10 days. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tChemical Engineering Research and Design | ||
463 |
_tVol. 147 _v[P. 510-519] _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aalkylbenzene sulfonic acid | |
610 | 1 | _adehydrogenation | |
610 | 1 | _aalkylation | |
610 | 1 | _asulfonation | |
610 | 1 | _amathematical modeling | |
610 | 1 | _aалкилбензолсульфокислоты | |
610 | 1 | _aдегидрогенизация | |
610 | 1 | _aалкилирование | |
610 | 1 | _aсульфирование | |
610 | 1 | _aматематическое моделирование | |
701 | 1 |
_aDolganova _bI. O. _cchemist _cAssociate Scientist of Tomsk Polytechnic University, postgraduate student, candidate of technical Sciences _f1988- _gIrena Olegovna _2stltpush _3(RuTPU)RU\TPU\pers\31271 |
|
701 | 1 |
_aIvanchina _bE. D. _cchemist _cProfessor of Tomsk Polytechnic University, Doctor of technical sciences _f1951- _gEmilia Dmitrievna _2stltpush _3(RuTPU)RU\TPU\pers\31274 |
|
701 | 1 |
_aDolganov _bI. M. _cChemical Engineer _cEngineer of Tomsk Polytechnic University _f1987- _gIgor Mikhailovich _2stltpush _3(RuTPU)RU\TPU\pers\32216 |
|
701 | 1 |
_aIvashkina _bE. N. _cChemical Engineer _cProfessor of Tomsk Polytechnic University, Doctor of sciences _f1983- _gElena Nikolaevna _2stltpush _3(RuTPU)RU\TPU\pers\31275 |
|
701 | 1 |
_aSolopova _bA. A. _cChemical engineer _cEngineer of Tomsk Polytechnic University _f1994- _gAnastasia Alexandrovna _2stltpush _3(RuTPU)RU\TPU\pers\46604 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа природных ресурсов _bОтделение химической инженерии _h8085 _2stltpush _3(RuTPU)RU\TPU\col\23513 |
801 | 2 |
_aRU _b63413507 _c20201002 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.cherd.2019.05.044 | |
942 | _cCF |