000 | 03514nla2a2200493 4500 | ||
---|---|---|---|
001 | 660527 | ||
005 | 20231030041713.0 | ||
035 | _a(RuTPU)RU\TPU\network\29995 | ||
035 | _aRU\TPU\network\29994 | ||
090 | _a660527 | ||
100 | _a20190722d2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aGB | ||
105 | _ay z 100zy | ||
135 | _avrgn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aSimulation of the Reactivity of Energy Materials in the Technosphere _fA. P. Rodzevich [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 10 tit.] | ||
330 | _aMethods are proposed for regulating the reactivity of energetic materials that circulate in the technosphere and are not rarely the cause of fires and explosions, both during storage and during transportation. As man-made factors that influence the stability of these materials magnetic and temperature fields and mechanical effects were used. The magnetic field (in the range from 0.01 T to 0.3 T) was used to intensify chemical processes, both at the stage of crystal growth (by the example of silver azide) and together with mechanical action (from 105 Pa to 107 Pa) in the finished crystals. The action of the magnetic field and mechanical stress leads to the stimulation of microplasticity and macroplasticity processes, which are accompanied by a slow decomposition of the samples and subsequent destruction. It was established experimentally that a slight change in storage temperature, as compared to room temperature, accelerates the aging process of samples (range of positive temperatures up to + 30°C), or leads to loss of plasticity (range of negative temperatures down to -20°C) resulting in loss of performance and in loss of useful properties of energy materials. | ||
461 | 1 |
_0(RuTPU)RU\TPU\network\2499 _tIOP Conference Series: Earth and Environmental Science |
|
463 | 1 |
_0(RuTPU)RU\TPU\network\29410 _tVol. 224 : Ecology and safety in the technosphere: current problems and solutions (EST 2018) _oAll-Russian research-to-practice conference, 22–24 November 2018, Yurga, Russian Federation _v[012018, 7 p.] _d2019 |
|
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aмоделирование | |
610 | 1 | _aреактивность | |
610 | 1 | _aэнергетические материалы | |
610 | 1 | _aтехносфера | |
610 | 1 | _aтехногенные факторы | |
610 | 1 | _aмагнитные поля | |
610 | 1 | _aмеханические воздействия | |
610 | 1 | _aпластичность | |
701 | 1 |
_aRodzevich _bA. P. _cspecialist in the field of mechanical engineering _cAssociate Professor of Yurga technological Institute of Tomsk Polytechnic University _f1967- _gAleksandr Pavlovich _2stltpush _3(RuTPU)RU\TPU\pers\34525 |
|
701 | 1 |
_aKuzmina _bL. V. |
|
701 | 1 |
_aGazenaur _bE. G. |
|
701 | 1 |
_aKrasheninin _bV. I. |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bЮргинский технологический институт (филиал) _bОтделение промышленных технологий _h8376 _2stltpush _3(RuTPU)RU\TPU\col\24717 |
801 | 1 |
_aRU _b63413507 _c20150101 _gRCR |
|
801 | 2 |
_aRU _b63413507 _c20190807 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.1088/1755-1315/224/1/012018 | |
856 | 4 | _uhttp://earchive.tpu.ru/handle/11683/55429 | |
942 | _cCF |