000 04252nlm1a2200529 4500
001 660573
005 20231030041714.0
035 _a(RuTPU)RU\TPU\network\30097
090 _a660573
100 _a20190805a2019 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aEffect of an Initiating Additive of CuSO4 on Changes in the Characteristics of Brown Coal Oxidation and Pyrolysis
_fK. B. Larionov [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 15 tit.]
330 _aThe oxidation and pyrolysis of brown coal containing 5 wt % CuSO4 as an initiating additive was studied. The experiment was performed by thermogravimetry at a heating rate of 2.5 K/min in an atmosphere of air and nitrogen. The process characteristics in the pyrolysis and oxidation mode were evaluated, and the activation energy of the process was determined by the Coats–Redfern method. It was established that the addition of the initiating agent CuSO4 led to a significant decrease in the initial temperature of oxidation and pyrolysis processes to shift the reaction toward the low-temperature region. Maximum changes in the reaction initiation temperatures in the oxidation (?Ti) and (?Td) pyrolysis modes were 35 and 50°?, respectively. It was established that the introduction of CuSO4 led to a decrease in the activation energy of oxidation by 7.1 kJ/mol, and ?Ea was 10 kJ/mol for the pyrolysis process. A decrease in the residence times of a sample within the limits of the sublimation of volatile substances was observed: ?ti was 12 min for oxidation, and ?td was 18 min for pyrolysis. According to mass-spectrometric analysis data, the presence of SO2 (peaks at 230 and 320°C) was detected in the oxidation and pyrolysis reaction products of modified samples; this was explained by the chemical interaction of copper sulfate with brown coal components.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tSolid Fuel Chemistry
463 _tVol. 53, iss. 2
_v[P. 120-127]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _abrown coal
610 1 _acopper sulfate
610 1 _aoxidation and pyrolysis processes
610 1 _aactivation energy
610 1 _athermal analysis
610 1 _amass-spectrometric analysis
610 1 _aбурый уголь
610 1 _aсульфат меди
610 1 _aокисление
610 1 _aпиролиз
610 1 _aэнергия активации
610 1 _aтермический анализ
610 1 _aмасс-спектрометрический анализ
701 1 _aLarionov
_bK. B.
_cspecialist in the field of power engineering
_ctechnician of Tomsk Polytechnic University
_f1990-
_gKirill Borisovich
_2stltpush
_3(RuTPU)RU\TPU\pers\35705
701 1 _aMishakov
_bI. V.
_gIljya Vladimirovich
701 1 _aVedyagin
_bA. A.
_cChemist
_cChief Expert of Tomsk Polytechnic University, Candidate of chemical sciences
_f1975-
_gAleksey Anatolievich
_2stltpush
_3(RuTPU)RU\TPU\pers\36694
701 1 _aGubin
_bV. E.
_cspecialist in the field of power engineering
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences
_f1976-
_gVladimir Evgenievich
_2stltpush
_3(RuTPU)RU\TPU\pers\35120
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа энергетики
_bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
_h8025
_2stltpush
_3(RuTPU)RU\TPU\col\23504
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий (ИШХБМТ)
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
801 2 _aRU
_b63413507
_c20190805
_gRCR
856 4 _uhttps://doi.org/10.3103/S036152191901004X
942 _cCF