000 04068nlm1a2200493 4500
001 660601
005 20231030041716.0
035 _a(RuTPU)RU\TPU\network\30193
090 _a660601
100 _a20190814a2019 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aNickel-chromium (Ni–Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings
_fD. V. Sidelev [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 56 tit.]
330 _aNickel-chromium coatings were deposited on Zr1Nb alloy using magnetron sputtering systems with «hot» Ni and cooled Cr targets. The effect of coating composition on high-temperature oxidation resistance and hydrogen uptake of Zr1Nb was studied. Hydrogen uptake of the alloy was measured in situ under gas-phase hydrogenation at 633?K. High-temperature oxidation was performed in air atmosphere at 1173–1373?K for 20?min. It was shown that the coating with high Ni content (83?at.%) drastically increases hydrogen uptake of the Zr1Nb alloy and demonstrates low oxidation resistance even at 1173?K. The coatings with Cr content =45?at.% have low hydrogen permeability which reduces the rate of hydrogen uptake of the alloy. The oxidation resistance of the NiCr coatings increases with Cr content in the as-deposited coatings. The pure Cr coating exhibits the best oxidation resistance: only 8?µm-thick oxide layer was observed. There is also found the intensive diffusion of nickel into the alloy during high-temperature oxidation of the samples coated by NiCr films with 55 and 17?at.% Ni. The as-deposited NiCr coatings are less brittle than the pure Cr coating, but their mechanical properties degrade stronger than for the Cr coating after the oxidation test.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tSurface and Coatings Technology
463 _tVol. 369
_v[P. 69-78]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _anickel-chromium coatings
610 1 _achromium
610 1 _anuclear fuel cladding
610 1 _azirconium alloy
610 1 _ahigh-temperature oxidation
610 1 _ahydrogen uptake
610 1 _aникельхромовые сплавы
610 1 _aхром
610 1 _aядерное топливо
610 1 _aциркониевые сплавы
610 1 _aвысокотемпературное окисление
701 1 _aSidelev
_bD. V.
_cphysicist
_cengineer of Tomsk Polytechnic University
_f1991-
_gDmitry Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34524
701 1 _aKashkarov
_bE. B.
_cPhysicist
_cAssociate Scientist of Tomsk Polytechnic University, Assistant
_f1991-
_gEgor Borisovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34949
701 1 _aSyrtanov
_bM. S.
_cphysicist
_cengineer of Tomsk Polytechnic University
_f1990-
_gMaksim Sergeevich
_2stltpush
_3(RuTPU)RU\TPU\pers\34764
701 1 _aKrivobokov
_bV. P.
_cRussian physicist
_cprofessor of Tomsk Polytechnic University (TPU), Doctor of Physical and Mathematical Sciences (DSc)
_f1948-
_gValery Pavlovich
_2stltpush
_3(RuTPU)RU\TPU\pers\30416
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа ядерных технологий
_bОтделение экспериментальной физики
_h7865
_2stltpush
_3(RuTPU)RU\TPU\col\23549
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа ядерных технологий
_bНаучно-образовательный центр Б. П. Вейнберга
_h7866
_2stltpush
_3(RuTPU)RU\TPU\col\23561
801 2 _aRU
_b63413507
_c20190814
_gRCR
856 4 _uhttps://doi.org/10.1016/j.surfcoat.2019.04.057
942 _cCF