000 04276nlm1a2200469 4500
001 660807
005 20231030041723.0
035 _a(RuTPU)RU\TPU\network\30822
090 _a660807
100 _a20191023a2019 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aCollision Behavior of Heterogeneous Liquid Droplets
_fN. E. Shlegel, P. A. Strizhak, R. S. Volkov
203 _aText
_celectronic
300 _aTitle screen
330 _aProcesses involved in the collision of liquid droplets enhance their atomization. If droplets contain more than one component, these processes become especially strong and intense. In this paper, we describe experiments for heterogeneous droplets of water solutions, emulsions, and slurries typical of fuel, firefighting, and heat and mass transfer technologies. We determine the conditions for a stable occurrence of the four droplet collision regimes: bounce, coalescence, separation, and disruption. We go on to establish how droplet dimensions, velocities, impact angles, component concentrations, as well as liquid viscosity, surface tension, and density affect collision parameters. The experimental results are generalized using collision regime maps produced in the coordinate systems controlling for the variations of Weber, Reynolds, Ohnesorge, and capillary numbers, as well as angular and linear interaction parameters. The results are compared with the scarce data by other authors. The Weber number variation range is not the only factor influencing the droplet collision behavior the form of four interaction regimes. Viscosity and surface tension of the liquid have a significant impact as well. An increase in the viscous forces can provide conditions for droplet breakup into a maximum number of small fragments. Coalescence is the dominating mode at low viscosity and high surface tension. Droplet bounce occurrence does not only depend on the Weber number range but also on phase transformations and thermophysical properties of the liquid. Finally, we determine the droplets interaction parameters for group of liquids that can provide intense droplet atomization through collisions.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tMicrogravity Science and Technology
463 _tVol. 31, iss. 5
_v[P. 487-503]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _asolutions
610 1 _aemulsions
610 1 _aslurries
610 1 _adroplets
610 1 _acollisions
610 1 _aseparation
610 1 _adisruption
610 1 _aкапли
610 1 _aэмульсии
610 1 _aразделение
700 1 _aShlegel
_bN. E.
_cspecialist in the field of heat and power engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1995-
_gNikita Evgenjevich
_2stltpush
_3(RuTPU)RU\TPU\pers\46675
701 1 _aStrizhak
_bP. A.
_cSpecialist in the field of heat power energy
_cDoctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)
_f1985-
_gPavel Alexandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\30871
701 1 _aVolkov
_bR. S.
_cspecialist in the field of power engineering
_csenior lecturer, engineer of the Tomsk Polytechnic University, candidate of technical Sciences
_f1987-
_gRoman Sergeevich
_2stltpush
_3(RuTPU)RU\TPU\pers\33926
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа энергетики
_bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
_h8025
_2stltpush
_3(RuTPU)RU\TPU\col\23504
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20201119
_gRCR
856 4 _uhttps://doi.org/10.1007/s12217-019-9702-5
942 _cCF