000 | 03328nlm1a2200397 4500 | ||
---|---|---|---|
001 | 660832 | ||
005 | 20231030041724.0 | ||
035 | _a(RuTPU)RU\TPU\network\30896 | ||
090 | _a660832 | ||
100 | _a20191029a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aGB | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aExtending the range of measurement of thermal imaging diagnostics of a high-intensity pulsed ion beam _fA. I. Pushkarev [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 26 tit.] | ||
330 | _aThermal imaging diagnostics was used as a surface temperature mapping tool to characterize the energy density distribution of a high-intensity pulsed ion beam. This approach was tested on the TEMP-6 accelerator (200–250 kV, 150 ns). The beam composition included carbon ions (85%) and protons, and the energy density in the focus was 5–12 J/cm2. Targets of stainless steel, titanium, brass, copper, and tungsten were examined. Our observations show that the maximum energy density measured with the thermal imaging diagnostics considerably exceeds the ablation threshold of the targets. An analysis of the overheating mechanisms of each target was carried out, including metastable overheating of the target to above its boiling temperature during rapid heating; formation, migration, and the subsequent annealing of fast radiation-induced defects in the target under ion beam irradiation. This expands the range of energy density measurement for this thermal imaging diagnostics from 2–3 J/cm2 up to 10–12 J/cm2 but introduces error into the results of measurement. For a stainless steel target, this error exceeds 15% at an energy density of more than 4 J/cm2. A method of correcting the results of the thermal imaging diagnostics is developed for a pulsed ion beam under conditions of intense ablation of the target material. | ||
461 | _tLaser and Particle Beams | ||
463 |
_tVol. 37, iss. 3 _v[P. 260-267] _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aимпульсные пучки | |
610 | 1 | _aдиоды | |
610 | 1 | _aтепловизионная диагностика | |
701 | 1 |
_aPushkarev _bA. I. _cphysicist _cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, Senior researcher _f1954- _gAleksandr Ivanovich _2stltpush _3(RuTPU)RU\TPU\pers\32701 |
|
701 | 0 | _aZhu Xiaopeng | |
701 | 1 |
_aPrima _bA. I. _cSpecialist in the field of material science _cEngineer of Tomsk Polytechnic University _f1994- _gArtem Igorevich _2stltpush _3(RuTPU)RU\TPU\pers\42319 |
|
701 | 1 |
_aEgorova _bYu. I. _cphysicist _cAssociate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences _f1988- _gYulia Ivanovna _2stltpush _3(RuTPU)RU\TPU\pers\44259 |
|
701 | 0 | _aLei Ming Kai | |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа новых производственных технологий _bОтделение материаловедения _h7871 _2stltpush _3(RuTPU)RU\TPU\col\23508 |
801 | 2 |
_aRU _b63413507 _c20191029 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1017/S0263034619000466 | |
942 | _cCF |