000 03940nla2a2200445 4500
001 660930
005 20231030041728.0
035 _a(RuTPU)RU\TPU\network\31068
035 _aRU\TPU\network\31057
090 _a660930
100 _a20191107a2019 k y0engy50 ba
101 0 _aeng
102 _aCH
105 _ay z 100zy
135 _adrgn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aPhenomenological Model of Radiation Hardness of LEDs Based on AlGaInP Heterostructures with Multiple Quantum Wells
_fA. V. Gradoboev, K. N. Orlova, A. V. Simonova
203 _aText
_celectronic
300 _aTitle screen
330 _aNeutron degradation of LEDs based upon AlGaInP heterostructures ([lambda]=630 nm and [lambda]=590 nm) with multiple quantum wells are presented in the article. For the initial red LED ([lambda]=630 nm) we can clearly distinguish three characteristic regions. In the small current region a low electron injection mode into the active region of the LEDs is observed. Further, as the operating current goes up, there are average and high electron injection in the active LEDs area regions. However, for the LEDY, the difference in the average and high electron injection regions is more pronounced and low electron injection region is absent. The boundary between the average and high electron injection regions can be characterized by the boundary current, which goes up with increasing exposure level. Three regions of electron injection in the active area of LEDs: low, average and high electron injection are illustrated for both types of LEDs under fast neutron irradiation. Based on the established relationships describing the emission power changing, a phenomenological model of the radiation hardness of LEDs based on AlGaInP heterostructures with MQW was shown. The LEDs radiation hardness is determined by the boundary current value, emission power in the low electron injection into the active LEDs area, the initial defective structure.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 0 _0(RuTPU)RU\TPU\network\24092
_tMaterials Science Forum
_oScientific Journal
463 0 _0(RuTPU)RU\TPU\network\30892
_tVol. 970 : Modern Problems in Materials Processing, Manufacturing, Testing and Quality Assurance II
_oSeptember 2019, Tomsk, Russia
_fNational Research Tomsk Polytechnic University (TPU) ; ed. A. P. Surzhikov
_v[P. 167-176]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aAlGaInP
610 1 _aHeterostructures
610 1 _aLight Emitting Diodes
610 1 _aгетероструктуры
610 1 _aсветодиоды
610 1 _aрадиационная стойкость
610 1 _aквантовые ямы
700 1 _aGradoboev
_bA. V.
_cphysicist
_cProfessor of Yurga technological Institute of Tomsk Polytechnic University, Doctor of technical sciences
_f1952-
_gAleksandr Vasilyevich
_2stltpush
_3(RuTPU)RU\TPU\pers\34242
701 1 _aOrlova
_bK. N.
_cphysicist
_cAssociate Professor of Yurga technological Institute of Tomsk Polytechnic University, Candidate of technical sciences
_f1985-
_gKseniya Nikolaevna
_2stltpush
_3(RuTPU)RU\TPU\pers\33587
701 1 _aSimonova
_bA. V.
_cPhysicist
_cAssistant of the Department of Tomsk Polytechnic University
_f1990-
_gAnastasia Vladimirovna
_2stltpush
_3(RuTPU)RU\TPU\pers\42263
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа неразрушающего контроля и безопасности
_bОтделение контроля и диагностики
_h7978
_2stltpush
_3(RuTPU)RU\TPU\col\23584
801 2 _aRU
_b63413507
_c20191107
_gRCR
856 4 _uhttps://doi.org/10.4028/www.scientific.net/MSF.970.167
942 _cCF