000 04102nlm1a2200505 4500
001 660976
005 20231030041729.0
035 _a(RuTPU)RU\TPU\network\31180
035 _aRU\TPU\network\30733
090 _a660976
100 _a20191114a2019 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aExperimental research into collisions of homogeneous and multi-component liquid droplets
_fM. V. Piskunov, N. E. Shlegel, P. A. Strizhak, R. S. Volkov
203 _aText
_celectronic
300 _aTitle screen
330 _aThis paper presents the results of experiments recording the collision characteristics of droplets of various liquids with each other in a gas medium. We use water-based compositions typical of fuel, petrochemical, and heat and mass transfer technologies: solutions, emulsions, slurries, immiscible two- and multi-component liquids. The study discusses how droplet dimensions, velocities, impact angles, component concentrations and properties affect interaction regime as well as the number and size of child droplets. Threshold conditions are analyzed for the occurrence of bouncing, separation, coalescence, and disruption of droplets. Basic hypotheses are formulated as to why the collision characteristics of single-component droplets in a gas differ from those of highly heterogeneous multi-component ones. We use the interaction regime maps based on the dimensionless processing of experimental results through angular and linear impact parameters, Weber, Reynolds, Ohnesorge, and capillary numbers. Collisions can provide major atomization, in which the relative surface area of the liquid increases 2–6 times. The values of these parameters are influenced by droplet velocity and size, component type (solid or liquid), concentration and properties (density, viscosity, surface tension), as well as temperature and role (projectile or target) of homogeneous and multi-component droplets.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tChemical Engineering Research and Design
463 _tVol. 150
_v[P. 84-98]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _ahomogeneous and multi-component droplet
610 1 _acollision
610 1 _abouncing
610 1 _acoalescence
610 1 _aseparation
610 1 _adisruption
610 1 _aгомогенная конденсация
610 1 _aмногокомпонентная жидкость
610 1 _aколлизия
610 1 _aотскок
610 1 _aсращивание
610 1 _aразделение
701 1 _aPiskunov
_bM. V.
_cspecialist in the field of thermal engineering
_cengineer of Tomsk Polytechnic University
_f1991-
_gMaksim Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34151
701 1 _aShlegel
_bN. E.
_cspecialist in the field of heat and power engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1995-
_gNikita Evgenjevich
_2stltpush
_3(RuTPU)RU\TPU\pers\46675
701 1 _aStrizhak
_bP. A.
_cSpecialist in the field of heat power energy
_cDoctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)
_f1985-
_gPavel Alexandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\30871
701 1 _aVolkov
_bR. S.
_cspecialist in the field of power engineering
_csenior lecturer, engineer of the Tomsk Polytechnic University, candidate of technical Sciences
_f1987-
_gRoman Sergeevich
_2stltpush
_3(RuTPU)RU\TPU\pers\33926
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа энергетики
_bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
_h8025
_2stltpush
_3(RuTPU)RU\TPU\col\23504
801 2 _aRU
_b63413507
_c20201119
_gRCR
856 4 _uhttps://doi.org/10.1016/j.cherd.2019.07.030
942 _cCF