000 | 04102nlm1a2200505 4500 | ||
---|---|---|---|
001 | 660976 | ||
005 | 20231030041729.0 | ||
035 | _a(RuTPU)RU\TPU\network\31180 | ||
035 | _aRU\TPU\network\30733 | ||
090 | _a660976 | ||
100 | _a20191114a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aExperimental research into collisions of homogeneous and multi-component liquid droplets _fM. V. Piskunov, N. E. Shlegel, P. A. Strizhak, R. S. Volkov |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aThis paper presents the results of experiments recording the collision characteristics of droplets of various liquids with each other in a gas medium. We use water-based compositions typical of fuel, petrochemical, and heat and mass transfer technologies: solutions, emulsions, slurries, immiscible two- and multi-component liquids. The study discusses how droplet dimensions, velocities, impact angles, component concentrations and properties affect interaction regime as well as the number and size of child droplets. Threshold conditions are analyzed for the occurrence of bouncing, separation, coalescence, and disruption of droplets. Basic hypotheses are formulated as to why the collision characteristics of single-component droplets in a gas differ from those of highly heterogeneous multi-component ones. We use the interaction regime maps based on the dimensionless processing of experimental results through angular and linear impact parameters, Weber, Reynolds, Ohnesorge, and capillary numbers. Collisions can provide major atomization, in which the relative surface area of the liquid increases 2–6 times. The values of these parameters are influenced by droplet velocity and size, component type (solid or liquid), concentration and properties (density, viscosity, surface tension), as well as temperature and role (projectile or target) of homogeneous and multi-component droplets. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tChemical Engineering Research and Design | ||
463 |
_tVol. 150 _v[P. 84-98] _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _ahomogeneous and multi-component droplet | |
610 | 1 | _acollision | |
610 | 1 | _abouncing | |
610 | 1 | _acoalescence | |
610 | 1 | _aseparation | |
610 | 1 | _adisruption | |
610 | 1 | _aгомогенная конденсация | |
610 | 1 | _aмногокомпонентная жидкость | |
610 | 1 | _aколлизия | |
610 | 1 | _aотскок | |
610 | 1 | _aсращивание | |
610 | 1 | _aразделение | |
701 | 1 |
_aPiskunov _bM. V. _cspecialist in the field of thermal engineering _cengineer of Tomsk Polytechnic University _f1991- _gMaksim Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\34151 |
|
701 | 1 |
_aShlegel _bN. E. _cspecialist in the field of heat and power engineering _cResearch Engineer of Tomsk Polytechnic University _f1995- _gNikita Evgenjevich _2stltpush _3(RuTPU)RU\TPU\pers\46675 |
|
701 | 1 |
_aStrizhak _bP. A. _cSpecialist in the field of heat power energy _cDoctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU) _f1985- _gPavel Alexandrovich _2stltpush _3(RuTPU)RU\TPU\pers\30871 |
|
701 | 1 |
_aVolkov _bR. S. _cspecialist in the field of power engineering _csenior lecturer, engineer of the Tomsk Polytechnic University, candidate of technical Sciences _f1987- _gRoman Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\33926 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) _h8025 _2stltpush _3(RuTPU)RU\TPU\col\23504 |
801 | 2 |
_aRU _b63413507 _c20201119 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.cherd.2019.07.030 | |
942 | _cCF |