000 02696nla2a2200469 4500
001 661313
005 20231030041742.0
035 _a(RuTPU)RU\TPU\network\31638
035 _aRU\TPU\network\31636
090 _a661313
100 _a20191128a2019 k y0engy50 ba
101 0 _aeng
102 _aGB
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aA fruits recognition system based on a modern deep learning technique
_fDang Thi Phuong Chung, Dinh Van Tai
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 7 tit.]
330 _aThe popular technology used in this innovative era is Computer vision for fruit recognition. Compared to other machine learning (ML) algorithms, deep neural networks (DNN) provide promising results to identify fruits in images. Currently, to identify fruits, different DNN-based classification algorithms are used. However, the issue in recognizing fruits has yet to be addressed due to similarities in size, shape and other features. This paper briefly discusses the use of deep learning (DL) for recognizing fruits and its other applications. The paper will also provide a concise explanation of convolution neural networks (CNNs) and the EfficientNet architecture to recognize fruit using the Fruit 360 dataset. The results show that the proposed model is 95% more accurate.
461 0 _0(RuTPU)RU\TPU\network\3526
_tJournal of Physics: Conference Series
463 0 _0(RuTPU)RU\TPU\network\31502
_tVol. 1327 : Innovations in Non-Destructive Testing (SibTest 2019)
_oV International Conference, 26–28 June 2019, Yekaterinburg, Russia
_o[proceedings]
_fNational Research Tomsk Polytechnic University (TPU)
_v[012050, 5 р.]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aсистемы распознавания
610 1 _aфрукты
610 1 _aкомпьютерное зрение
610 1 _aалгоритмы
610 1 _aмашинное обучение
610 1 _aидентификация
610 1 _aизображения
610 1 _aнейронные сети
610 1 _aсверточные нейронные сети
700 0 _aDang Thi Phuong Chung
701 0 _aDinh Van Tai
712 0 2 _aНациональный исследовательский Томский политехнический университет
_c(2009- )
_2stltpush
_3(RuTPU)RU\TPU\col\15902
801 2 _aRU
_b63413507
_c20200123
_gRCR
856 4 _uhttps://doi.org/10.1088/1742-6596/1327/1/012050
856 4 _uhttp://earchive.tpu.ru/handle/11683/57042
942 _cCF