000 | 04153nlm1a2200493 4500 | ||
---|---|---|---|
001 | 661372 | ||
005 | 20231030041744.0 | ||
035 | _a(RuTPU)RU\TPU\network\31738 | ||
035 | _aRU\TPU\network\29780 | ||
090 | _a661372 | ||
100 | _a20191209a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aDroplet evaporation on a structured surface: The role of near wall vortexes in heat and mass transfer _fS. Ya. Misyura [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 50 tit.] | ||
330 | _aExperimental studies on the evaporation of a drop located on a horizontal hot wall with cavities of different diameters of 0.5-2.5 mm were carried out. The wall temperature Tw was constant (74 °C and 83 °C). The evaporation behavior on a structured surface was compared with that on a smooth wall. Instantaneous velocity profiles have been obtained over a single cavity and in the vicinity of several cavities using the Micro Particle Image Velocity method (Micro PIV). It has been established that a hotter liquid is periodically ejected from the cavity, which increases convection inside the drop. The strongest intensification of mass transfer is specific for the largest cavities with a diameter of 2.5 mm. The behavior of the droplet evaporation on a smooth wall coincides with that on a structured surface with a cavity diameter of 0.5 mm. Until now, there have been no data that would link the convection in the drop with the vortexes in the cavity at non-isothermal evaporation and at high heat fluxes. The strongest influence of cavities is manifested in the initial period of evaporation, when a cold drop is placed on a hot wall. Over time, the evaporation rate on a structured wall approaches evaporation on a smooth (unstructured) surface. The article considers the influence of several key factors on the convection in a drop. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tInternational Journal of Heat and Mass Transfer | ||
463 |
_tVol. 148 _v[119126, 23 p. _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _astructured surface | |
610 | 1 | _acavity | |
610 | 1 | _adroplet evaporation | |
610 | 1 | _aevaporation rate | |
610 | 1 | _afree convection | |
610 | 1 | _aструктурированные системы | |
610 | 1 | _aполости | |
610 | 1 | _aиспарение | |
610 | 1 | _aконвекция | |
701 | 1 |
_aMisyura _bS. Ya. _cspecialist in the field of power engineering _cleading researcher of Tomsk Polytechnic University, candidate of technical sciences _f1964- _gSergey Yakovlevich _2stltpush _3(RuTPU)RU\TPU\pers\39641 |
|
701 | 1 |
_aKuznetsov _bG. V. _cSpecialist in the field of heat power energy _cProfessor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences _f1949- _gGeny Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\31891 |
|
701 | 1 |
_aVolkov _bR. S. _cspecialist in the field of power engineering _csenior lecturer, engineer of the Tomsk Polytechnic University, candidate of technical Sciences _f1987- _gRoman Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\33926 |
|
701 | 1 |
_aMorozov _bV. S. _gVladimir Sergeevich |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) _h8025 _2stltpush _3(RuTPU)RU\TPU\col\23504 |
801 | 2 |
_aRU _b63413507 _c20191209 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.ijheatmasstransfer.2019.119126 | |
942 | _cCF |