000 04153nlm1a2200493 4500
001 661372
005 20231030041744.0
035 _a(RuTPU)RU\TPU\network\31738
035 _aRU\TPU\network\29780
090 _a661372
100 _a20191209a2019 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aDroplet evaporation on a structured surface: The role of near wall vortexes in heat and mass transfer
_fS. Ya. Misyura [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 50 tit.]
330 _aExperimental studies on the evaporation of a drop located on a horizontal hot wall with cavities of different diameters of 0.5-2.5 mm were carried out. The wall temperature Tw was constant (74 °C and 83 °C). The evaporation behavior on a structured surface was compared with that on a smooth wall. Instantaneous velocity profiles have been obtained over a single cavity and in the vicinity of several cavities using the Micro Particle Image Velocity method (Micro PIV). It has been established that a hotter liquid is periodically ejected from the cavity, which increases convection inside the drop. The strongest intensification of mass transfer is specific for the largest cavities with a diameter of 2.5 mm. The behavior of the droplet evaporation on a smooth wall coincides with that on a structured surface with a cavity diameter of 0.5 mm. Until now, there have been no data that would link the convection in the drop with the vortexes in the cavity at non-isothermal evaporation and at high heat fluxes. The strongest influence of cavities is manifested in the initial period of evaporation, when a cold drop is placed on a hot wall. Over time, the evaporation rate on a structured wall approaches evaporation on a smooth (unstructured) surface. The article considers the influence of several key factors on the convection in a drop.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tInternational Journal of Heat and Mass Transfer
463 _tVol. 148
_v[119126, 23 p.
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _astructured surface
610 1 _acavity
610 1 _adroplet evaporation
610 1 _aevaporation rate
610 1 _afree convection
610 1 _aструктурированные системы
610 1 _aполости
610 1 _aиспарение
610 1 _aконвекция
701 1 _aMisyura
_bS. Ya.
_cspecialist in the field of power engineering
_cleading researcher of Tomsk Polytechnic University, candidate of technical sciences
_f1964-
_gSergey Yakovlevich
_2stltpush
_3(RuTPU)RU\TPU\pers\39641
701 1 _aKuznetsov
_bG. V.
_cSpecialist in the field of heat power energy
_cProfessor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences
_f1949-
_gGeny Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\31891
701 1 _aVolkov
_bR. S.
_cspecialist in the field of power engineering
_csenior lecturer, engineer of the Tomsk Polytechnic University, candidate of technical Sciences
_f1987-
_gRoman Sergeevich
_2stltpush
_3(RuTPU)RU\TPU\pers\33926
701 1 _aMorozov
_bV. S.
_gVladimir Sergeevich
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа энергетики
_bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
_h8025
_2stltpush
_3(RuTPU)RU\TPU\col\23504
801 2 _aRU
_b63413507
_c20191209
_gRCR
856 4 _uhttps://doi.org/10.1016/j.ijheatmasstransfer.2019.119126
942 _cCF