000 03594nlm1a2200397 4500
001 661401
005 20231030041745.0
035 _a(RuTPU)RU\TPU\network\31808
035 _aRU\TPU\network\12923
090 _a661401
100 _a20191211a2019 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aMacrostructure and Strength of the Al–Zn–Sn Composite Produced by Liquid-Phase Sintering of the Al–Zn Alloy and Pure Tin Powder Mixture
_fN. M. Rusin, A. L. Skorentsev
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 22 tit.]
330 _aFeatures of liquid-phase sintering compacts made of powders of the Al–10Zn alloy and tin of the PO 2 brand, as well as the influence of sintering modes on the structure and strength of forming antifriction composite of the (Al–10Zn)–40Sn composition, are studied. The porosity of the initial green compacts varies in a range of 5–18%. Compacts are sintered in a vacuum furnace under a residual gas pressure no higher than 10–2 MPa. The sintering temperature varies in a range of 550–615°C and corresponds to the partial wetting of aluminum with liquid tin. The sample holding time at a specified temperature is from 30 to 180 min. Structural studies show that the particle size of the aluminum and tin phases increases with an increase in the sintering temperature and holding time. The mechanical properties of sintered composites are determined by their compression testing. The samples are cut from the middle of sintered compacts. It is established that samples made of the (Al–10Zn)–40Sn sintered alloy possess high ductility and exhibit higher strength when compared with the Al–40Sn sintered composite with a pure aluminum matrix due to the more intense strain hardening of a matrix at a high deformation. It is found that sintered composites prepared from high-density green compacts subjected to preliminary low-temperature holding possess the highest strength. Based on the results, it is concluded that the liquid-phase sintering in a specified temperature range makes it possible to prepare (Al–10Zn)–40Sn composites with a bound aluminum matrix effectively preventing the strain localization in soft tin-based phase interlayers. The optimal sintering temperature should not exceed 600°C.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tRussian Journal of Non-Ferrous Metals
463 _tVol. 60, iss. 3
_v[P. 295-300]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _a(Al–Zn)–Sn composite
610 1 _aliquid-phase sintering
610 1 _astructure and strength of two-phase MMCs
610 1 _aкомпозиты
610 1 _aжидкофазное спекание
700 1 _aRusin
_bN. M.
_gNikolay Martemjyanovich
701 1 _aSkorentsev
_bA. L.
_cphysicist
_cengineer of Tomsk Polytechnic University, Candidate of technical sciences
_f1987-
_gAleksandr Leonidovich
_2stltpush
_3(RuTPU)RU\TPU\pers\35790
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа ядерных технологий
_bОтделение экспериментальной физики
_h7865
_2stltpush
_3(RuTPU)RU\TPU\col\23549
801 2 _aRU
_b63413507
_c20191211
_gRCR
856 4 _uhttps://doi.org/10.3103/S106782121903012X
942 _cCF