000 | 03528nla2a2200445 4500 | ||
---|---|---|---|
001 | 661476 | ||
005 | 20231030041748.0 | ||
035 | _a(RuTPU)RU\TPU\network\32072 | ||
035 | _aRU\TPU\network\32071 | ||
090 | _a661476 | ||
100 | _a20191226a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
105 | _ay z 100zy | ||
135 | _adrgn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aTowards a Theory of Flow Stress in Multimodal Polycrystalline Aggregates. Effects of Dispersion Hardening _fD. Cevizovic, A. A. Reshetnyak, Yu. P. Sharkeev |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 7 tit.] | ||
330 | _aWe elaborate the recently introduced theory of flow stress, including yield strength, in polycrystalline materials under quasi-static plastic deformations, thereby extending the case of single-mode aggregates to multimodal ones in the framework of a two-phase model which is characterized by the presence of crystalline and grain-boundary phases. Both analytic and graphic forms of the generalized Hall–Petch relations are obtained for multimodal samples with BCC ([alpha]-phase Fe), FCC (Cu, Al, Ni) and HCP ([alpha]-Ti, Zr) crystalline lattices at T=300K with different values of the grain-boundary (second) phase. The case of dispersion hardening due to a natural incorporation into the model of a third phase including additional particles of doping materials is considered. The maximum of yield strength and the respective extremal grain size of samples are shifted by changing both the input from different grain modes and the values at the second and third phases. We study the influence of multimodality and dispersion hardening on the temperature-dimensional effect for yield strength within the range of 100–350K. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | 0 |
_0(RuTPU)RU\TPU\network\4816 _tAIP Conference Proceedings |
|
463 | 0 |
_0(RuTPU)RU\TPU\network\31884 _tVol. 2167 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2019 (AMHS'19) _oProceedings of the International Conference, 1–5 October 2019, Tomsk, Russia _fNational Research Tomsk Polytechnic University (TPU) ; Institute of Strength Physics and Materials Science SB RAS (Russia) ; eds. V. E. Panin ; S. G. Psakhie ; V. M. Fomin _v[020047, 7 p.] _d2019 |
|
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aтеория напряжений | |
610 | 1 | _aполикристаллические агрегаты | |
610 | 1 | _aпластические деформации | |
610 | 1 | _aупрочнение | |
610 | 1 | _aтекучесть | |
610 | 1 | _aкомпозитные материалы | |
610 | 1 | _aсплавы | |
700 | 1 |
_aCevizovic _bD. |
|
701 | 1 |
_aReshetnyak _bA. A. |
|
701 | 1 |
_aSharkeev _bYu. P. _cphysicist _cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1950- _gYury Petrovich _2stltpush _3(RuTPU)RU\TPU\pers\32228 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20191226 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1063/1.5131914 | |
942 | _cCF |