000 02522nlm1a2200445 4500
001 661579
005 20231030041751.0
035 _a(RuTPU)RU\TPU\network\32219
035 _aRU\TPU\network\23026
090 _a661579
100 _a20200115a2015 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aOn a problem in geometry of numbers arising in spectral theory
_fYu. A. Kordyukov, A. A. Yakovlev
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 11 tit.]
330 _aWe study the lattice point counting problem for a class of families of domains in a Euclidean space. This class consists of anisotropically expanding bounded domains that remain unchanged along some fixed linear subspace and expand in directions orthogonal to this subspace. We find the leading term in the asymptotics of the number of lattice points in such family of domains and prove remainder estimates in this asymptotics under various conditions on the lattice and the family of domains. As a consequence, we prove an asymptotic formula for the eigenvalue distribution function of the Laplace operator on a flat torus in adiabatic limit determined by a linear foliation with a nontrivial remainder estimate.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tRussian Journal of Mathematical Physics
463 _tVol. 22, iss. 4
_v[P. 473-482]
_d2015
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _alinear subspace
610 1 _aasymptotic formula
610 1 _aalgebraic number
610 1 _arectangular parallelepiped
610 1 _aadiabatic limit
610 1 _aлинейное подпространство
610 1 _aасимптотическая формула
610 1 _aалгебраическое число
610 1 _aпрямоугольный параллелепипед
610 1 _aадиабатический предел
700 1 _aKordyukov
_bYu. A.
_gYuri Arkadievich
701 1 _aYakovlev
_bA. A.
_cspecialist in the field of petroleum engineering
_cFirst Vice-Rector, Associate Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1981-
_gAndrey Alexandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\45819
801 2 _aRU
_b63413507
_c20200115
_gRCR
856 4 _uhttps://doi.org/10.1134/S106192081504007X
942 _cCF