000 02731nlm1a2200445 4500
001 661580
005 20231030041751.0
035 _a(RuTPU)RU\TPU\network\32220
035 _aRU\TPU\network\32219
090 _a661580
100 _a20200115a2015 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aThe number of integer points in a family of anisotropically expanding domains
_fYu. A. Kordyukov, A. A. Yakovlev
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 17 tit.]
330 _aWe investigate the remainder in the asymptotic formula for the number of integer points in a family of bounded domains in the Euclidean space, which remain unchanged along some linear subspace and expand in the directions, orthogonal to this subspace. We prove some estimates for the remainder, imposing additional assumptions on the boundary of the domain. We study the average remainder estimates, where the averages are taken over rotated images of the domain by a subgroup of the group SO(n)SO(n) of orthogonal transformations of the Euclidean space RnRn. Using these results, we improve the remainder estimate in the adiabatic limit formula for the eigenvalue distribution function of the Laplace operator associated with a bundle-like metric on a compact manifold equipped with a Riemannian foliation in the particular case when the foliation is a linear foliation on the torus and the metric is the standard Euclidean metric on the torus.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tMonatshefte fur Mathematik
463 _tVol. 178, iss. 1
_v[P. 97-111]
_d2015
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _ainteger points
610 1 _aanisotropically expanding domains
610 1 _aconvexity
610 1 _aadiabatic limits
610 1 _afoliation
610 1 _alaplace operator
610 1 _aалгебраическое число
610 1 _aпрямоугольный параллелепипед
610 1 _aадиабатический предел
610 1 _aасимптотическая формула Лапласа
700 1 _aKordyukov
_bYu. A.
_gYuri Arkadievich
701 1 _aYakovlev
_bA. A.
_cspecialist in the field of petroleum engineering
_cFirst Vice-Rector, Associate Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1981-
_gAndrey Alexandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\45819
801 2 _aRU
_b63413507
_c20200115
_gRCR
856 4 _uhttps://doi.org/10.1007/s00605-015-0787-7
942 _cCF