000 02390nlm1a2200433 4500
001 661583
005 20231030041752.0
035 _a(RuTPU)RU\TPU\network\32223
035 _aRU\TPU\network\32220
090 _a661583
100 _a20200115a2012 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aInteger points in domains and adiabatic limits
_fYu. A. Kordyukov, A. A. Yakovlev
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 16 tit.]
330 _aAn asymptotic formula is proved for the number of integral points in a family of bounded domains with smooth boundary in Euclidean space; these domains remain unchanged along some linear subspace and expand in the directions orthogonal to this subspace. A sharper estimate for the remainder is obtained in the case where the domains are strictly convex. These results make it possible to improve the remainder estimate in the adiabatic limit formula (due to the first author) for the eigenvalue distribution function of the Laplace operator associated with a bundle-like metric on a compact manifold equipped with a Riemannian foliation in the particular case where the foliation is a linear foliation on the torus and the metric is the standard Euclidean metric on the torus.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tSt. Petersburg Mathematical Journal
463 _tVol. 23, iss. 6
_v[P. 977-987]
_d2012
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aInteger points
610 1 _alattices
610 1 _adomains
610 1 _aconvexity
610 1 _aadiabatic limits
610 1 _afoliation
610 1 _aLaplace operator
610 1 _aадиабатические пределы
610 1 _aоператор Лапласа
700 1 _aKordyukov
_bYu. A.
_gYuri Arkadievich
701 1 _aYakovlev
_bA. A.
_cspecialist in the field of petroleum engineering
_cFirst Vice-Rector, Associate Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1981-
_gAndrey Alexandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\45819
801 2 _aRU
_b63413507
_c20200515
_gRCR
856 4 _uhttps://doi.org/10.1090/S1061-0022-2012-01225-2
942 _cCF