000 04015nlm1a2200517 4500
001 661768
005 20231030041758.0
035 _a(RuTPU)RU\TPU\network\32640
035 _aRU\TPU\network\29971
090 _a661768
100 _a20200214a2019 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aDevelopment of the video stream object detection algorithm (VSODA) with tracking
_fA. Yu. Zarnitsyn, A. S. Volkov, A. A. Voytsekhovskiy, B. I. Pyakullya
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 9 tit.]
330 _aThe object tracking is one of the most important task in video analysis. Many methods have been proposed such as TLD (Tracking, Learning, Detection), Meanshift and MIL but they show good accuracy in laboratory cases, not in real ones, where the accuracy is defined as a numerical difference between computed object coordinates and the real ones. One of the reasons is lack of information about tracked object and environment changes. If a method has the prior information about tracked object, then it will be able to perform with higher accuracy. Some of the newest object tracking methods such as GOTURN use trained CNN (convolutional neural network) and have better accuracy because of knowledge about how the tracked object looks like in different situations such as light intensity changes and tracked object’s rotations. If we use only a classification algorithm (classifier) then it can find an object that was in training set with high probability. But if its appearance is changing it will be lost when deviation will be higher than trust limit. Then it is important to have parts of prior and posterior information about tracked object. The prior information is given by detector (CNN) and posterior information – by tracking algorithm (TLD). One of the biggest detector problems is high computational complexity in terms of operations’ number and one of the solutions is to use the classifier in parallel with the tracker. In future work we are going to use different sensors, not only RGB camera, but RGBD camera, which may improve accuracy due to higher amount of information.
461 _tEAI Endorsed Transactions on Energy Web
463 _tVol. 19, iss. 22
_v[e1, 5 p.]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _acomputer vision
610 1 _adeep learning
610 1 _amachine learning
610 1 _apattern recognition
610 1 _amobile robotics
610 1 _aobject tracking
610 1 _avideo analysis
610 1 _aкомпьютерное зрение
610 1 _aмашинное обучение
610 1 _aраспознавание
610 1 _aраспознавание образов
610 1 _aмобильная робототехника
610 1 _aотслеживание
610 1 _aвидеоанализ
701 1 _aZarnitsyn
_bA. Yu.
_cspecialist in the field of informatics and computer technology
_cAssistant of the Department of Tomsk Polytechnic University
_f1990-
_gAleksander Yurievich
_2stltpush
_3(RuTPU)RU\TPU\pers\46039
701 1 _aVolkov
_bA. S.
_gArtem Sergeevich
701 1 _aVoytsekhovskiy
_bA. A.
_gAleksey Alekseevich
701 1 _aPyakullya
_bB. I.
_cspecialist in the field of informatics and computer technology
_cdesign engineer of Tomsk Polytechnic University
_f1990-
_gBoris Ivanovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34170
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение автоматизации и робототехники
_h7952
_2stltpush
_3(RuTPU)RU\TPU\col\23553
801 2 _aRU
_b63413507
_c20200214
_gRCR
856 4 _uhttp://dx.doi.org/10.4108/eai.22-1-2019.156385
942 _cCF