000 | 03283nlm1a2200457 4500 | ||
---|---|---|---|
001 | 661905 | ||
005 | 20231030041803.0 | ||
035 | _a(RuTPU)RU\TPU\network\32976 | ||
090 | _a661905 | ||
100 | _a20200319a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aDeformation of polytetrafluorethylene at various static strain and electron irradiation _fN. A. Voronova, A. I. Kupchishin, M. N. Niyazov [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 17 tit.] | ||
330 | _aThe patterns of depth microhardness, nanohardness and modulus of elasticity of alumina ceramics were investigated by microindentation and nanoindentation methods after treatment with a beam of ions of the composition: carbon ions (C+, Cn+) and protons (H+) in a ratio of 85%/15%. The accelerating voltage was 180 keV. The experiments were performed at pulse energy density (W) of 0.3, 1 and 1.5 J/cm2. It is shown that ion treatment increases the strength of the surface layers of ceramics at depth that exceeds the penetration depth of accelerated ions by an order of magnitude or more. That is, there is a long-range effect characteristic of the ion treatment of metals and alloys. The analysis of the processes of energy release and structural changes in the surface layers shows that melting and recrystallization of the thin surface layer of ceramics observed in ion treatment are not the determining factors that change the strength properties of ceramics under these layers. It is shown that hardening of these layers occurs by the shock-wave mechanism initiated by local overheating of the surface layers of ceramics by intense pulsed ion beam. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 |
_tNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms _d1998- |
||
463 |
_tVol. 465 _v[Р. 59-61] _d2020 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _apolytetrafluoroethylenee | |
610 | 1 | _aelectron irradiation | |
610 | 1 | _amechanical properties | |
610 | 1 | _astatic strain | |
610 | 1 | _aexponential model | |
610 | 1 | _aradiation dose | |
701 | 1 |
_aVoronova _bN. A. _gNataljya Alekseevna |
|
701 | 1 |
_aKupchishin _bA. I. _gAnatoly Ivanovich |
|
701 | 1 |
_aNiyazov _bM. N. _gMarat Niyazovich |
|
701 | 1 |
_aLisitsyn _bV. M. _cphysicist _cRussian physicist _cProfessor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1939- _gViktor Mikhailovich _2stltpush _3(RuTPU)RU\TPU\pers\28330 |
|
701 | 1 |
_aTlebaev _bK. B. _gKayrat Beyshenovich |
|
701 | 1 |
_aGerasimenko _bN. N. _gNikolay Nikolaevich |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа новых производственных технологий _bОтделение материаловедения _h7871 _2stltpush _3(RuTPU)RU\TPU\col\23508 |
801 | 2 |
_aRU _b63413507 _c20200319 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.nimb.2019.12.025 | |
942 | _cCF |