000 02217nlm1a2200337 4500
001 661915
005 20231030041803.0
035 _a(RuTPU)RU\TPU\network\32998
090 _a661915
100 _a20200320a2019 k y0engy50 ba
101 0 _aeng
135 _aarnn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aSchwarzian mechanics via nonlinear realizations
_fA. V. Galajinsky
203 _aText
_celectronic
300 _aTitle screen
320 _a[References.: 13 tit.]
330 _aThe method of nonlinear realizations is used to clarify some conceptual and technical issues related to the Schwarzian mechanics. It is shown that the Schwarzian derivative arises naturally, if one applies the method to SL(2,R)×R group and decides to keep the number of the independent Goldstone fields to a minimum. The Schwarzian derivative is linked to the invariant Maurer-Cartan one-forms, which make its SL(2,R)-invariance manifest. A Lagrangian formulation for a variant of the Schwarzian mechanics studied recently in A. Galajinsky (2018) is built and its geometric description in terms of 4d metric of the ultrahyperbolic signature is given.
461 _tPhysics Letters B
463 _tVol. 795
_v[P. 277-280]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _athe method of nonlinear realizations
610 1 _aSchwarzian mechanics
700 1 _aGalajinsky
_bA. V.
_cDoctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT)
_cProfessor of the TPU
_f1971-
_gAnton Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\27878
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20211124
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/64860
856 4 _uhttps://doi.org/10.1016/j.physletb.2019.05.054
942 _cCF