000 | 02217nlm1a2200337 4500 | ||
---|---|---|---|
001 | 661915 | ||
005 | 20231030041803.0 | ||
035 | _a(RuTPU)RU\TPU\network\32998 | ||
090 | _a661915 | ||
100 | _a20200320a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _aarnn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aSchwarzian mechanics via nonlinear realizations _fA. V. Galajinsky |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References.: 13 tit.] | ||
330 | _aThe method of nonlinear realizations is used to clarify some conceptual and technical issues related to the Schwarzian mechanics. It is shown that the Schwarzian derivative arises naturally, if one applies the method to SL(2,R)×R group and decides to keep the number of the independent Goldstone fields to a minimum. The Schwarzian derivative is linked to the invariant Maurer-Cartan one-forms, which make its SL(2,R)-invariance manifest. A Lagrangian formulation for a variant of the Schwarzian mechanics studied recently in A. Galajinsky (2018) is built and its geometric description in terms of 4d metric of the ultrahyperbolic signature is given. | ||
461 | _tPhysics Letters B | ||
463 |
_tVol. 795 _v[P. 277-280] _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _athe method of nonlinear realizations | |
610 | 1 | _aSchwarzian mechanics | |
700 | 1 |
_aGalajinsky _bA. V. _cDoctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT) _cProfessor of the TPU _f1971- _gAnton Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\27878 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20211124 _gRCR |
|
856 | 4 | _uhttp://earchive.tpu.ru/handle/11683/64860 | |
856 | 4 | _uhttps://doi.org/10.1016/j.physletb.2019.05.054 | |
942 | _cCF |