000 | 03852nlm1a2200481 4500 | ||
---|---|---|---|
001 | 661952 | ||
005 | 20231030041804.0 | ||
035 | _a(RuTPU)RU\TPU\network\33044 | ||
035 | _aRU\TPU\network\32419 | ||
090 | _a661952 | ||
100 | _a20200324a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aCubic SiC nanowire synthesis by DC arc discharge under ambient air conditions _fA. Ya. Pak, A. S. Ivashutenko, A. A. Zakharova, Yu. Z. Vasiljeva |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 37 tit.] | ||
330 | _aSilicon carbide (SiC) is a widely used material characterized by unique physical and chemical properties. In the paper, cubic silicon carbide nanowires are synthesized via the non-vacuum DC (direct current) arc discharge method. DC arc is generated between the graphite rod and the graphite crucible under ambient air conditions without any vacuum or applying special defenses to the used atmosphere equipment. According to experimental data, the percentage of silicon carbide of the total product in interval from 70 A to 100 A increases from 3.9% up to 26.7% (mass), and in interval from 130 A to 200 A of arc discharge current decreases from 26.1% down to 19.9% (mass). The silicon carbide wires are characterized by the typical core-shell SiC-SiOx structure. It is possible to control the phase composition and increase the yield of SiC by changing the arc discharge current amplitude. The optimal synthesis parameters using the DC source with the maximum current of 200 A are a current of 200 A, synthesis time of 12 s and a silicon fraction in the initial mixture not more than 25% (mass) to completely process the initial silicon into its carbide. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tSurface and Coatings Technology | ||
463 |
_tVol. 387 _v[125554, 7 p.] _d2020 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aDC Arc discharge | |
610 | 1 | _asynthesis | |
610 | 1 | _asilicon carbide | |
610 | 1 | _ananowire | |
610 | 1 | _aambient air conditions | |
610 | 1 | _aдуговые разряды | |
610 | 1 | _aпостоянный ток | |
610 | 1 | _aсинтез | |
610 | 1 | _aкарбид кремния | |
610 | 1 | _aокружающая среда | |
701 | 1 |
_aPak _bA. Ya. _cspecialist in the field of electrical engineering _chead of Department of Tomsk Polytechnic University, candidate of technical Sciences _f1986- _gAleksandr Yakovlevich _2stltpush _3(RuTPU)RU\TPU\pers\34120 |
|
701 | 1 |
_aIvashutenko _bA. S. _cspecialist in the field of electrical engineering _cHead of the Department of the Tomsk Polytechnic University, Candidate of technical sciences _f1981- _gAlexander Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\33076 |
|
701 | 1 |
_aZakharova _bA. A. _cspecialist in the field of informatics and computer engineering _cProfessor of Yurga technological Institute of Tomsk Polytechnic University, Doctor of sciences _f1976- _gAleksandra Aleksandrovna _2stltpush _3(RuTPU)RU\TPU\pers\34678 |
|
701 | 1 |
_aVasiljeva (Vassilyeva) _bYu. Z. _cspecialist in the field of electric power engineering _cResearch Engineer of Tomsk Polytechnic University _f1995- _gYuliya Zakharovna _2stltpush _3(RuTPU)RU\TPU\pers\46740 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bОтделение электроэнергетики и электротехники (ОЭЭ) _h8022 _2stltpush _3(RuTPU)RU\TPU\col\23505 |
801 | 2 |
_aRU _b63413507 _c20210128 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.surfcoat.2020.125554 | |
942 | _cCF |