000 | 03847nlm1a2200493 4500 | ||
---|---|---|---|
001 | 661961 | ||
005 | 20231030041805.0 | ||
035 | _a(RuTPU)RU\TPU\network\33072 | ||
090 | _a661961 | ||
100 | _a20200325a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aSingle Plasmon-Active Optical Fiber Probe for Instantaneous Chiral Detection _fE. V. Milyutina, O. A. Guselnikova, A. Kushnarenko [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aThe chiral recognition of organic compounds is of vital importance in the field of pharmacology and medicine. Unfortunately, the common analytical routes used in this field are significantly restricted by time spent and equipment demands. In this work, we propose an unprecedented alternative, aimed at enantiomer discrimination and estimation of their concentrations in an uncomplicated and instantaneous manner. The proposed approach is based on the creation of an optical fiber probe with two pronounced plasmonic bands attributed to gold and silver. The gold or silver surfaces were grafted with moieties, able to enunciating entrap chiral amines from solution, resulting in a wavelength shift corresponding to each plasmonic metal. As a model compound of chiral amine, we chose the DOPA, also taking in mind its high medical relevancy. For chiral detection, the optical fiber probe was simply immersed in an analytical solution of DOPA, and the selective shift of gold or silver plasmon bands was observed in the reflected light depending on DOPA chirality. The observed shifts depend on the concentration of DOPA enantiomers. In the case of a racemic mixture, the shifts of both plasmonic bands emerge, making possible the simultaneous determination of enantiomer concentrations and their ratio. The analytical cycle takes several minutes and requires very simple laboratory equipment. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tACS Sensors | ||
463 |
_tVol. 5, iss. 1 _v[P. 50-56] _d2020 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _asurface plasmon resonance | |
610 | 1 | _afiber-optic probe | |
610 | 1 | _achiral detection | |
610 | 1 | _ainstantaneous recognition | |
610 | 1 | _aracemic mixture | |
610 | 1 | _aDOPA | |
610 | 1 | _aплазмонные колебания | |
610 | 1 | _aволоконно-оптическая техника | |
701 | 1 |
_aMilyutina (Miliutina) _bE. V. _cchemical technologist _cengineer of Tomsk Polytechnic University _f1991- _gElena Vadimovna _2stltpush _3(RuTPU)RU\TPU\pers\46756 |
|
701 | 1 |
_aGuselnikova _bO. A. _cchemist _claboratory assistant of Tomsk Polytechnic University _f1992- _gOlga Andreevna _2stltpush _3(RuTPU)RU\TPU\pers\34478 |
|
701 | 1 |
_aKushnarenko _bA. _gAnna |
|
701 | 1 |
_aBainova _bP. _gPolina |
|
701 | 1 |
_aPostnikov _bP. S. _corganic chemist _cSenior Lecturer of Tomsk Polytechnic University, Candidate of chemical sciences _f1984- _gPavel Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\31287 |
|
701 | 1 |
_aHnatowicz _bV. _gVladimir |
|
701 | 1 |
_aSvorcik _bV. _gVaclav |
|
701 | 1 |
_aLyutakov _bO. _cchemist-technologist _cAssociate Scientist of Tomsk Polytechnic University _f1982- _gOleksy _2stltpush _3(RuTPU)RU\TPU\pers\36875 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий (ИШХБМТ) _c(2017- ) _h8120 _2stltpush _3(RuTPU)RU\TPU\col\23537 |
801 | 2 |
_aRU _b63413507 _c20210205 _gRCR |
|
856 | 4 | _uhttps://pubs.acs.org/doi/10.1021/acssensors.9b01328 | |
942 | _cCF |