000 | 04333nlm1a2200445 4500 | ||
---|---|---|---|
001 | 662047 | ||
005 | 20231030041808.0 | ||
035 | _a(RuTPU)RU\TPU\network\33180 | ||
090 | _a662047 | ||
100 | _a20200512a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aEffects of the Initial Gel Fuel Temperature on the Ignition Mechanism and Characteristics of Oil-Filled Cryogel Droplets in the High-Temperature Oxidizer Medium _fD. O. Glushkov, A. G. Nigay, V. A. Yanovsky, O. S. Yashutina |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aThe ignition mechanism was studied for a group of gel fuel compositions in a high-temperature oxidizer medium. It was determined how the initial temperature of the fuel influences the ignition characteristics. The gel fuel (oil-filled cryogel) was prepared from an oil emulsion based on the mixture of a combustible liquid and polyvinyl alcohol. The composition of primary oil emulsions was as follows: the aqueous solution of polyvinyl alcohol (5, 10 wt %) + 40-60 vol % of oil + 2 vol % of emulsifier. The initial temperature of gel fuels ranged from 188 to 293 K. Combustion was initiated in high-temperature motionless air at 873-1273 K. Using a high-speed video recording system, we established that at different initial temperatures of the gel fuel, a set of identical processes occurs during the induction period; these are different from the same physical and chemical processes during the ignition of a combustible liquid. After reaching threshold conditions, the flame spreads in the droplet's vicinity from a hot spot through the gas mixture. Hot spot is an ignited and a small-sized fragment separating and moving away from the molten fuel droplet as a result of a microexplosion. The values of the main process characteristic - ignition delay times - differ 25-95% for fuel samples with the initial temperature of 293 K and temperatures of 188-233 K because of a long heating and melting stage of the latter. This is explained by a 2.5-3.6-fold difference in the amount of energy, which is necessary to supply to a colder fuel sample for this phase transformation to occur, other things being equal. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tEnergy and Fuels | ||
463 |
_tVol. 33, iss. 11 _v[P. 11812-11820] _d2019 |
||
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aredox reactions | |
610 | 1 | _aliquids | |
610 | 1 | _afossil fuels | |
610 | 1 | _agels | |
610 | 1 | _aокислительно-восстановительные реакции | |
610 | 1 | _aжидкости | |
610 | 1 | _aископаемое топливо | |
610 | 1 | _aгели | |
701 | 1 |
_aGlushkov _bD. O. _cspecialist in the field of power engineering _cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1988- _gDmitry Olegovich _2stltpush _3(RuTPU)RU\TPU\pers\32471 |
|
701 | 1 |
_aNigay _bA. G. _cspecialist in the field of informatics and computer technology _cengineer of Tomsk Polytechnic University _f1992- _gAleksandr Gerasimovich _2stltpush _3(RuTPU)RU\TPU\pers\37189 |
|
701 | 1 |
_aYanovsky _bV. A. _gVyacheslav Aleksadrovich |
|
701 | 1 |
_aYashutina _bO. S. _cspecialist in the field of heat and power engineering _cResearch Engineer of Tomsk Polytechnic University _f1993- _gOlga Sergeevna _2stltpush _3(RuTPU)RU\TPU\pers\44658 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) _h8025 _2stltpush _3(RuTPU)RU\TPU\col\23504 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20200512 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1021/acs.energyfuels.9b02300 | |
942 | _cCF |