000 03870nlm1a2200493 4500
001 662434
005 20231030041821.0
035 _a(RuTPU)RU\TPU\network\33589
090 _a662434
100 _a20200813a2019 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aLocalized surface curvature artifacts in tip-enhanced nanospectroscopy imaging
_fE. S. Sheremet, L. R. Kim, D. I. Stepanishcheva [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 43 tit.]
330 _aTip-enhanced Raman spectroscopy (TERS) allows the chemical analysis with a spatial resolution at the nanoscale, well beyond what the diffraction limit of light makes possible. We can further boost the TERS sensitivity by using a metallic substrate in the so-called gap-mode TERS. In this context, the goal of this work is to provide a generalized view of imaging artifacts in TERS and near-field imaging that occur due to tip-sample coupling. Contrary to the case of gap-mode with a flat substrate where the size of the enhanced region is smaller than the tip size when visualizing 3D nanostructures the tip convolution effect may broaden the observed dimensions due to the local curvature of the sample. This effect is particularly critical considering that most works on gap-mode TERS consider a perfectly flat substrate which is rarely the case in actual experiments. We investigate a range of substrates to evidence these geometrical effects and to obtain an understanding of the nanoscale curvature role in TERS imaging. Our experimental results are complemented by numerical simulations and an analogy with atomic force microscopy artifacts is introduced. As a result, this work offers a useful analysis of gap-mode TERS imaging with tip- and substrate-related artifacts furthering our understanding and the reliability of near-field optical nanospectroscopy.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tUltramicroscopy
463 _tVol. 206
_v[112811, 8 p.]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aimaging artifacts
610 1 _aplasmonics
610 1 _ananospectroscopy
610 1 _ascanning probe microscopy
610 1 _aплазмоника
610 1 _aзондовые методы
610 1 _aмикроскопия
701 1 _aSheremet
_bE. S.
_cphysicist
_cProfessor of Tomsk Polytechnic University
_f1988-
_gEvgeniya Sergeevna
_2stltpush
_3(RuTPU)RU\TPU\pers\40027
701 1 _aKim
_bL. R.
_gLarisa Robertovna
701 1 _aStepanishcheva
_bD. I.
_gDarjya Igorevna
701 1 _aKolchuzhin
_bV. A.
_gVladimir Anatoljevich
701 1 _aMilekhin
_bA. G.
_gAleksandr Germanovich
701 1 _aZahn
_bD. R. T.
_gDietrich
701 1 _aRodriguez (Rodriges) Contreras
_bR. D.
_cVenezuelan physicist, doctor of science
_cProfessor of Tomsk Polytechnic University
_f1982-
_gRaul David
_2stltpush
_3(RuTPU)RU\TPU\pers\39942
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий (ИШХБМТ)
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
801 2 _aRU
_b63413507
_c20200813
_gRCR
856 4 _uhttps://doi.org/10.1016/j.ultramic.2019.112811
942 _cCF