000 | 03870nlm1a2200493 4500 | ||
---|---|---|---|
001 | 662434 | ||
005 | 20231030041821.0 | ||
035 | _a(RuTPU)RU\TPU\network\33589 | ||
090 | _a662434 | ||
100 | _a20200813a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aLocalized surface curvature artifacts in tip-enhanced nanospectroscopy imaging _fE. S. Sheremet, L. R. Kim, D. I. Stepanishcheva [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 43 tit.] | ||
330 | _aTip-enhanced Raman spectroscopy (TERS) allows the chemical analysis with a spatial resolution at the nanoscale, well beyond what the diffraction limit of light makes possible. We can further boost the TERS sensitivity by using a metallic substrate in the so-called gap-mode TERS. In this context, the goal of this work is to provide a generalized view of imaging artifacts in TERS and near-field imaging that occur due to tip-sample coupling. Contrary to the case of gap-mode with a flat substrate where the size of the enhanced region is smaller than the tip size when visualizing 3D nanostructures the tip convolution effect may broaden the observed dimensions due to the local curvature of the sample. This effect is particularly critical considering that most works on gap-mode TERS consider a perfectly flat substrate which is rarely the case in actual experiments. We investigate a range of substrates to evidence these geometrical effects and to obtain an understanding of the nanoscale curvature role in TERS imaging. Our experimental results are complemented by numerical simulations and an analogy with atomic force microscopy artifacts is introduced. As a result, this work offers a useful analysis of gap-mode TERS imaging with tip- and substrate-related artifacts furthering our understanding and the reliability of near-field optical nanospectroscopy. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tUltramicroscopy | ||
463 |
_tVol. 206 _v[112811, 8 p.] _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aimaging artifacts | |
610 | 1 | _aplasmonics | |
610 | 1 | _ananospectroscopy | |
610 | 1 | _ascanning probe microscopy | |
610 | 1 | _aплазмоника | |
610 | 1 | _aзондовые методы | |
610 | 1 | _aмикроскопия | |
701 | 1 |
_aSheremet _bE. S. _cphysicist _cProfessor of Tomsk Polytechnic University _f1988- _gEvgeniya Sergeevna _2stltpush _3(RuTPU)RU\TPU\pers\40027 |
|
701 | 1 |
_aKim _bL. R. _gLarisa Robertovna |
|
701 | 1 |
_aStepanishcheva _bD. I. _gDarjya Igorevna |
|
701 | 1 |
_aKolchuzhin _bV. A. _gVladimir Anatoljevich |
|
701 | 1 |
_aMilekhin _bA. G. _gAleksandr Germanovich |
|
701 | 1 |
_aZahn _bD. R. T. _gDietrich |
|
701 | 1 |
_aRodriguez (Rodriges) Contreras _bR. D. _cVenezuelan physicist, doctor of science _cProfessor of Tomsk Polytechnic University _f1982- _gRaul David _2stltpush _3(RuTPU)RU\TPU\pers\39942 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий (ИШХБМТ) _c(2017- ) _h8120 _2stltpush _3(RuTPU)RU\TPU\col\23537 |
801 | 2 |
_aRU _b63413507 _c20200813 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.ultramic.2019.112811 | |
942 | _cCF |