000 03910nlm1a2200517 4500
001 662535
005 20231030041824.0
035 _a(RuTPU)RU\TPU\network\33690
035 _aRU\TPU\network\33500
090 _a662535
100 _a20200828a2020 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aPolymer Brushes on Graphitic Carbon Nitride for Patterning and as a SERS Active Sensing Layer via Incorporated Nanoparticles
_fW. Sheng, Li Wei, Tan Deming [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aGraphitic carbon nitride (gCN) has a broad range of promising applications, from energy harvesting and storage to sensing. However, most of the applications are still restricted due to gCN poor dispersibility and limited functional groups. Herein, a direct photografting of gCN using various polymer brushes with tailorable functionalities via UV photopolymerization at ambient conditions is demonstrated. The systematic study of polymer brush-functionalized gCN reveals that the polymerization did not alter the inherent structure of gCN. Compared to the pristine gCN, the gCN-polymer composites show good dispersibility in various solvents such as water, ethanol, and tetrahydrofuran (THF). Patterned polymer brushes on gCN can be realized by employing photomask and microcontact printing technology. The polymer brushes with incorporated silver nanoparticles (AgNPs) on gCN can act as a multifunctional recyclable active sensing layer for surface-enhanced Raman spectroscopy (SERS) detection and photocatalysis. This multifunctionality is shown in consecutive cycles of SERS and photocatalytic degradation processes that can be applied to in situ monitor pollutants, such as dyes or pharmaceutical waste, with high chemical sensitivity as well as to water remediation. This dual functionality provides a significant advantage to our AgNPs/polymer-gCN with regard to state-of-the-art systems reported so far that only allow SERS pollutant detection but not their decomposition. These results may provide a new methodology for the covalent functionalization of gCN and may enable new applications in the field of catalysis, biosensors, and, most interestingly, environmental remediation.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tACS Applied Materials and Interfaces
463 _tVol. 12, iss. 8
_v[P. 9797-9805]
_d2020
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _agraphitic carbon nitride
610 1 _apolymer brushes
610 1 _amicrocontact printing
610 1 _asurface-enhanced Raman spectroscopy
610 1 _aphotocatalysis
610 1 _aфотокатализ
701 1 _aSheng
_bW.
_gWenbo
701 0 _aLi Wei
701 0 _aTan Deming
701 0 _aZhang Panpan
701 0 _aZhang En
701 1 _aSheremet
_bE. S.
_cphysicist
_cProfessor of Tomsk Polytechnic University
_f1988-
_gEvgeniya Sergeevna
_2stltpush
_3(RuTPU)RU\TPU\pers\40027
701 1 _aSchmidt
_bB. V. K. J.
_gBernhard
701 0 _aXinliang Feng
701 1 _aRodriguez (Rodriges) Contreras
_bR. D.
_cVenezuelan physicist, doctor of science
_cProfessor of Tomsk Polytechnic University
_f1982-
_gRaul David
_2stltpush
_3(RuTPU)RU\TPU\pers\39942
701 1 _aJordan
_bR.
_gRainer
701 1 _aAmin
_bI.
_gIhsan
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
801 2 _aRU
_b63413507
_c20200828
_gRCR
856 4 _uhttps://doi.org/10.1021/acsami.9b21984
942 _cCF