000 04048nlm1a2200397 4500
001 662549
005 20231030041825.0
035 _a(RuTPU)RU\TPU\network\33704
035 _aRU\TPU\network\33690
090 _a662549
100 _a20200902a2020 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aPatterning GaSe by High-Powered Laser Beams
_fD. L. Cheshev, R. D. Rodriguez (Rodriges) Contreras, A. Matkovic [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aWe report the high-powered laser modification of the chemical, physical, and structural properties of the two-dimensional (2D) van der Waals material GaSe. Our results show that contrary to expectations and previous reports, GaSe at the periphery of a high-power laser beam does not entirely decompose into Se and Ga2O3. In contrast, we find unexpectedly that the Raman signal from GaSe gets amplified around regions where it was not expected to exist. Atomic force microscopy (AFM), dielectric force microscopy (DFM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) results show that laser irradiation induces the formation of nanoparticles. Our analyses demonstrate that, except for a fraction of Ga2Se3, these nanoparticles still belong to the GaSe phase but possess different electrical and optical properties. These changes are evidenced in the increased Raman intensity attributed to the near-resonance conditions with the Raman excitation laser. The elemental analysis of nanoparticles shows that the relative selenium content increased to as much as 70% from a 50:50 value in stoichiometric GaSe. This elemental change is related to the formation of the Ga2Se3 phase identified by Raman spectroscopy at some locations near the edge. Further, we exploit the localized high-power laser processing of GaSe to induce the formation of Ag–GaSe nanostructures by exposure to a solution of AgNO3. The selective reaction of AgNO3 with laser-irradiated GaSe gives rise to composite nanostructures that display photocatalytic activity originally absent in the pristine 2D material. The photocatalytic activity was investigated by the transformation of 4-nitrobenzenethiol to its amino and dimer forms detected in situ by Raman spectroscopy. This work improves the understanding of light–matter interaction in layered systems, offering an approach to the formation of laser-induced composites with added functionality.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tACS Omega
463 _tVol. 5, iss. 17
_v[P. 10183–10190]
_d2020
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
701 1 _aCheshev
_bD. L.
_cSpecialist in the field of material science
_cEngineer of Tomsk Polytechnic University
_f2000-
_gDmitry Leonidovich
_2stltpush
_3(RuTPU)RU\TPU\pers\47385
701 1 _aRodriguez (Rodriges) Contreras
_bR. D.
_cVenezuelan physicist, doctor of science
_cProfessor of Tomsk Polytechnic University
_f1982-
_gRaul David
_2stltpush
_3(RuTPU)RU\TPU\pers\39942
701 1 _aMatkovic
_bA.
_gAleksandar
701 1 _aRuban
_bA. S.
_cgeologist
_cengineer of Tomsk Polytechnic University
_f1991-
_gAleksey Sergeevich
_2stltpush
_3(RuTPU)RU\TPU\pers\34023
701 0 _aChen Jin-Ju
701 1 _aSheremet
_bE. S.
_cphysicist
_cProfessor of Tomsk Polytechnic University
_f1988-
_gEvgeniya Sergeevna
_2stltpush
_3(RuTPU)RU\TPU\pers\40027
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
801 2 _aRU
_b63413507
_c20221129
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/64864
856 4 _uhttps://doi.org/10.1021/acsomega.0c01079
942 _cCF