000 04568nlm1a2200589 4500
001 662872
005 20231030041835.0
035 _a(RuTPU)RU\TPU\network\34031
035 _aRU\TPU\network\18263
090 _a662872
100 _a20201119a2020 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aMagnetron plasma mediated immobilization of hyaluronic acid for the development of functional double-sided biodegradable vascular graft
_fV. L. Kudryavtseva, K. S. Stankevich, A. I. Kozelskaya [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 48 tit.]
330 _aThe clinical need for vascular grafts is associated with cardiovascular diseases frequently leading to fatal outcomes. Artificial vessels based on bioresorbable polymers can replace the damaged vascular tissue or create a bypass path for blood flow while stimulating regeneration of a blood vessel in situ. However, the problem of proper conditions for the cells to grow on the vascular graft from the adventitia while maintaining its mechanical integrity of the luminal surface remains a challenge. In this work, we propose a two-stage technology for processing electrospun vascular graft from polycaprolactone, which consists of plasma treatment and subsequent immobilization of hyaluronic acid on its surface producing thin double-sided graft with one hydrophilic and one hydrophobic side. Plasma modification activates the polymer surfaces and produces a thin layer for linker-free immobilisation of bioactive molecules, thereby producing materials with unique properties. Proposed modification does not affect the morphology or mechanical properties of the graft and improves cell adhesion. The proposed approach can potentially be used for various biodegradable polymers such as polylactic acid, polyglycolide and their copolymers and blends, with a hydrophilic inner surface and a hydrophobic outer surface.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tApplied Surface Science
463 _tVol. 529
_v[147196, 9 p.]
_d2020
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _apolycaprolactone
610 1 _ahyaluronic acid
610 1 _aplasma
610 1 _aelectrospinning
610 1 _avascular graft
610 1 _asuperhydrophilicity
610 1 _aполикапролактон
610 1 _aгиалуроновая кислота
610 1 _aплазма
610 1 _aэлектроспиннинг
610 1 _aтрансплантаты
701 1 _aKudryavtseva
_bV. L.
_cphysicist
_cEngineer of Tomsk Polytechnic University
_f1993-
_gValeriya Lvovna
_2stltpush
_3(RuTPU)RU\TPU\pers\38564
701 1 _aStankevich
_bK. S.
_cPhysicist
_cEngineer Tomsk Polytechnic University
_f1992-
_gKsenia Sergeevna
_2stltpush
_3(RuTPU)RU\TPU\pers\37546
701 1 _aKozelskaya
_bA. I.
_cphysicist
_cAssistant of Tomsk Polytechnic University, Candidate of physical and mathematical sciences
_f1985-
_gAnna Ivanovna
_2stltpush
_3(RuTPU)RU\TPU\pers\39663
701 1 _aKibler
_bE. V.
_cspecialist in the field of nuclear technologies
_cEngineer of Tomsk Polytechnic University
_f1995-
_gElina Vitaljevna
_2stltpush
_3(RuTPU)RU\TPU\pers\46672
701 1 _aZhukov
_bYu. M.
_gYuriy Mikhaylovich
701 1 _aMalashicheva
_bA. B.
_gAnna Borisovna
701 1 _aGolovkin
_bA. S.
_gAleksey Sergeevich
701 1 _aMishanin
_bA. I.
_gAleksandr Igorevich
701 1 _aFilimonov
_bV. D.
_cRussian chemist
_cProfessor of the TPU
_f1945-
_gViktor Dmitrievich
_2stltpush
_3(RuTPU)RU\TPU\pers\26423
701 1 _aBolbasov
_bE. N.
_cphysicist
_cAssociate Scientist of Tomsk Polytechnic University, Candidate of Sciences
_f1981-
_gEvgeny Nikolaevich
_2stltpush
_3(RuTPU)RU\TPU\pers\30857
701 1 _aTverdokhlebov
_bS. I.
_cphysicist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical science
_f1961-
_gSergei Ivanovich
_2stltpush
_3(RuTPU)RU\TPU\pers\30855
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bФизико-технический институт (ФТИ)
_bКафедра экспериментальной физики (ЭФ)
_h7596
_2stltpush
_3(RuTPU)RU\TPU\col\21255
801 2 _aRU
_b63413507
_c20201119
_gRCR
856 4 _uhttps://doi.org/10.1016/j.apsusc.2020.147196
942 _cCF