000 04087nlm1a2200493 4500
001 662913
005 20231030041837.0
035 _a(RuTPU)RU\TPU\network\34072
035 _aRU\TPU\network\33800
090 _a662913
100 _a20201219a2020 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aMultiresponsive Hybrid Microparticles for Stimuli-Responsive Delivery of Bioactive Compounds
_fS. S. Vlasov, P. S. Postnikov, M. V. Belousov [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 42 tit.]
330 _aHybrid microparticles based on an iron core and an amphiphilic polymeric shell have been prepared to respond simultaneously to magnetic and ultrasonic fields and variation in the surrounding pH to trigger and modulate the delivery of doxorubicin. The microparticles have been developed in four steps: (i) synthesis of the iron core; (ii) surface modification of the core; (iii) conjugation with the amphiphilic poly(lactic acid)-grafted chitosan; and (iv) doxorubicin loading. The particles demonstrate spherical shape, a size in the range of 1–3 µm and surface charge that is tuneable by changing the pH of the environment. The microparticles demonstrate good stability in simulated physiological solutions and are able to hold up to 400 µg of doxorubicin per mg of dried particles. The response to ultrasound and the changes in the shell structure during exposure to different pH levels allows the control of the burst intensity and release rate of the payload. Additionally, the magnetic response of the iron core is preserved despite the polymer coat. In vitro cytotoxicity tests performed on fibroblast NIH/3T3 demonstrate a reduction in the cell viability after administration of doxorubicin-loaded microparticles compared to the administration of free doxorubicin. The application of ultrasound causes a burst in the release of the doxorubicin from the carrier, causing a decrease in cell viability. The microparticles demonstrate in vitro cytocompatibility and hemocompatibility at concentrations of up to 50 and 60 µg/mL, respectively.
461 _tApplied Sciences
463 _tVol. 10, iss. 12
_v[4324, 14 p.]
_d2020
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _acore–shell microparticles
610 1 _aultrasound
610 1 _aamphiphilic polymers
610 1 _amagnetic microparticles
610 1 _adoxorubicin
610 1 _aмикрочастицы
610 1 _aультразвук
610 1 _aамфифильные структуры
610 1 _aдоксорубицин
701 1 _aVlasov
_bS. S.
_gSergey Sergeevich
701 1 _aPostnikov
_bP. S.
_corganic chemist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of chemical sciences
_f1984-
_gPavel Sergeevich
_2stltpush
_3(RuTPU)RU\TPU\pers\31287
701 1 _aBelousov
_bM. V.
_cchemist
_cProfessor of Tomsk Polytechnic University, Doctor of Pharmaceutical Sciences
_f1963-
_gMikhail Valerievich
_2stltpush
_3(RuTPU)RU\TPU\pers\45418
701 1 _aKrivoshchekov
_bS. V.
_cchemist
_cengineer of Tomsk Polytechnic University
_f1987-
_gSergey Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34574
701 1 _aYusubov
_bM. S.
_cchemist
_cProfessor of Tomsk Polytechnic University, Doctor of chemical sciences
_f1961-
_gMekhman Suleiman-Ogly (Suleimanovich)
_2stltpush
_3(RuTPU)RU\TPU\pers\31833
701 1 _aGurjev
_bA. M.
_gArtem Mikhaylovich
701 1 _aDi Martino
_bA.
_corganic chemist
_cresearch of Tomsk Polytechnic University
_f1984-
_gAntonio
_2stltpush
_3(RuTPU)RU\TPU\pers\39440
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
801 2 _aRU
_b63413507
_c20201219
_gRCR
856 4 _uhttps://doi.org/10.3390/app10124324
942 _cCF