000 | 03805nla2a2200493 4500 | ||
---|---|---|---|
001 | 663022 | ||
005 | 20231030041840.0 | ||
035 | _a(RuTPU)RU\TPU\network\34191 | ||
035 | _aRU\TPU\network\34190 | ||
090 | _a663022 | ||
100 | _a20210120a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
105 | _aa z 101zy | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aComparative Analysis of the Rayleigh-Taylor Instability Suppression During Compression of Metallic Gas-Puff Z Pinch at the MIG and GIT-12 Facilities _fA. Zhigalin, A. Rousskikh, V. I. Oreshkin [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: p. 231 (8 tit.)] | ||
330 | _aWe present experiments on implosion of metallic gas-puff Z-pinches. Experiments were performed on the MIG and GIT-12 pulse power generators. The MIG is a multifunctional pulse power generator with current amplitude of 2.5 MA and a current rise time of ~ 100 ns [1]. The GIT-12 is an Arkadiev-Marx pulse power generator. It provides the current of 4.7 MA with the current rise time of 1.7 ȝs in the short-circuit load [2]. Metallic gas-puff was the main element of the load on both generators. Metallic gas-puff Z-pinches were formed using plasma guns where plasma production was initiated by a high current vacuum arc discharge [3]. All of the plasma gun electrodes were made of magnesium or aluminum. To visualize the process of metallic gas-puff Z-pinch implosion, we performed time-gated imaging of the visible pinch radiation. An HSFC-Pro 4-channel, 12-bit intensified charge-coupled device (ICCD) camera was used to take 4 successive images in a single shot. The image analysis had shown that during implosion of the metallic gas-puff Z-pinch, the Rayleigh-Taylor instabilities were suppressed. Final pinch implosion diameter was determined. The optimal (from the point of view of radiation output in magnesium K-shell radiation) formation time of a plasma jet of a vacuum-arc discharge was determined. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
463 | 0 |
_0(RuTPU)RU\TPU\network\34152 _tEnergy Fluxes and Radiation Effects (EFRE-2020 online) _oproceedings of 7th International Congress, September 14-26, 2020, Tomsk, Russia _fNational Research Tomsk Polytechnic University (TPU) ; Institute of Electrical and Electronics Engineers (IEEE) ; ed. N. A. Ratakhin _v[P. 228-231] _d2020 |
|
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _avacuum arc | |
610 | 1 | _aplasma | |
610 | 1 | _apinch stability | |
610 | 1 | _aвакуумные дуги | |
610 | 1 | _aплазма | |
610 | 1 | _aгазы | |
610 | 1 | _aустановки | |
610 | 1 | _aнеустойчивость Рэлея-Тейлора | |
701 | 1 |
_aZhigalin _bA. _gAlexander |
|
701 | 1 |
_aRousskikh _bA. _gAlexander |
|
701 | 1 |
_aOreshkin _bV. I. _cspecialist in the field of non-destructive testing _cSenior researcher of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1960- _gVladimir Ivanovich _2stltpush _3(RuTPU)RU\TPU\pers\33779 |
|
701 | 1 |
_aShishlov _bA. _gAlexander |
|
701 | 1 |
_aCherdizov _bR. _gRustam |
|
701 | 1 |
_aKokshenev _bV. _gVladimir |
|
701 | 1 |
_aBaksht _bR. _gRina |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа неразрушающего контроля и безопасности _bОтделение контроля и диагностики _h7978 _2stltpush _3(RuTPU)RU\TPU\col\23584 |
801 | 2 |
_aRU _b63413507 _c20210203 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1109/EFRE47760.2020.9241964 | |
942 | _cCF |