000 03805nla2a2200493 4500
001 663022
005 20231030041840.0
035 _a(RuTPU)RU\TPU\network\34191
035 _aRU\TPU\network\34190
090 _a663022
100 _a20210120a2020 k y0engy50 ba
101 0 _aeng
105 _aa z 101zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aComparative Analysis of the Rayleigh-Taylor Instability Suppression During Compression of Metallic Gas-Puff Z Pinch at the MIG and GIT-12 Facilities
_fA. Zhigalin, A. Rousskikh, V. I. Oreshkin [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 231 (8 tit.)]
330 _aWe present experiments on implosion of metallic gas-puff Z-pinches. Experiments were performed on the MIG and GIT-12 pulse power generators. The MIG is a multifunctional pulse power generator with current amplitude of 2.5 MA and a current rise time of ~ 100 ns [1]. The GIT-12 is an Arkadiev-Marx pulse power generator. It provides the current of 4.7 MA with the current rise time of 1.7 ȝs in the short-circuit load [2]. Metallic gas-puff was the main element of the load on both generators. Metallic gas-puff Z-pinches were formed using plasma guns where plasma production was initiated by a high current vacuum arc discharge [3]. All of the plasma gun electrodes were made of magnesium or aluminum. To visualize the process of metallic gas-puff Z-pinch implosion, we performed time-gated imaging of the visible pinch radiation. An HSFC-Pro 4-channel, 12-bit intensified charge-coupled device (ICCD) camera was used to take 4 successive images in a single shot. The image analysis had shown that during implosion of the metallic gas-puff Z-pinch, the Rayleigh-Taylor instabilities were suppressed. Final pinch implosion diameter was determined. The optimal (from the point of view of radiation output in magnesium K-shell radiation) formation time of a plasma jet of a vacuum-arc discharge was determined.
333 _aРежим доступа: по договору с организацией-держателем ресурса
463 0 _0(RuTPU)RU\TPU\network\34152
_tEnergy Fluxes and Radiation Effects (EFRE-2020 online)
_oproceedings of 7th International Congress, September 14-26, 2020, Tomsk, Russia
_fNational Research Tomsk Polytechnic University (TPU) ; Institute of Electrical and Electronics Engineers (IEEE) ; ed. N. A. Ratakhin
_v[P. 228-231]
_d2020
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _avacuum arc
610 1 _aplasma
610 1 _apinch stability
610 1 _aвакуумные дуги
610 1 _aплазма
610 1 _aгазы
610 1 _aустановки
610 1 _aнеустойчивость Рэлея-Тейлора
701 1 _aZhigalin
_bA.
_gAlexander
701 1 _aRousskikh
_bA.
_gAlexander
701 1 _aOreshkin
_bV. I.
_cspecialist in the field of non-destructive testing
_cSenior researcher of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1960-
_gVladimir Ivanovich
_2stltpush
_3(RuTPU)RU\TPU\pers\33779
701 1 _aShishlov
_bA.
_gAlexander
701 1 _aCherdizov
_bR.
_gRustam
701 1 _aKokshenev
_bV.
_gVladimir
701 1 _aBaksht
_bR.
_gRina
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа неразрушающего контроля и безопасности
_bОтделение контроля и диагностики
_h7978
_2stltpush
_3(RuTPU)RU\TPU\col\23584
801 2 _aRU
_b63413507
_c20210203
_gRCR
856 4 _uhttps://doi.org/10.1109/EFRE47760.2020.9241964
942 _cCF