000 03517nlm1a2200409 4500
001 663134
005 20231030041844.0
035 _a(RuTPU)RU\TPU\network\34303
090 _a663134
100 _a20210126a2020 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aIntelligent UAV Deployment for a Disaster-Resilient Wireless Network
_fH. Hydher , D. N. K. Dzhayakodi (Jayakody) Arachshiladzh, K. Hemachandra, T. Samarasinghe
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 32 tit.]
330 _aDeployment of unmanned aerial vehicles (UAVs) as aerial base stations (ABSs) has been considered to be a feasible solution to provide network coverage in scenarios where the conventional terrestrial network is overloaded or inaccessible due to an emergency situation. This article studies the problem of optimal placement of the UAVs as ABSs to enable network connectivity for the users in such a scenario. The main contributions of this work include a less complex approach to optimally position the UAVs and to assign user equipment (UE) to each ABS, such that the total spectral efficiency (TSE) of the network is maximized, while maintaining a minimum QoS requirement for the UEs. The main advantage of the proposed approach is that it only requires the knowledge of UE and ABS locations and statistical channel state information. The optimal 2-dimensional (2D) positions of the ABSs and the UE assignments are found using K-means clustering and a stable marriage approach, considering the characteristics of the air-to-ground propagation channels, the impact of co-channel interference from other ABSs, and the energy constraints of the ABSs. Two approaches are proposed to find the optimal altitudes of the ABSs, using search space constrained exhaustive search and particle swarm optimization (PSO). The numerical results show that the PSO-based approach results in higher TSE compared to the exhaustive search-based approach in dense networks, consuming similar amount of energy for ABS movements. Both approaches lead up to approximately 8-fold energy savings compared to ABS placement using naive exhaustive search.
461 _tSensors
463 _tVol. 20, iss. 21
_v[6140, 18 p.]
_d2020
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aaerial base station
610 1 _aaverage spectral efficiency
610 1 _ainterference mitigation
610 1 _aparticle swarm optimization
610 1 _aunmanned aerial vehicles
701 1 _aHydher
_bH.
_gHassaan
701 1 _aDzhayakodi (Jayakody) Arachshiladzh
_bD. N. K.
_cspecialist in the field of electronics
_cProfessor of Tomsk Polytechnic University
_f1983-
_gDushanta Nalin Kumara
_2stltpush
_3(RuTPU)RU\TPU\pers\37962
701 1 _aHemachandra
_bK.
_gKasun
701 1 _aSamarasinghe
_bT.
_gTharaka
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bНаучно-образовательный центр "Автоматизация и информационные технологии"
_h8422
_2stltpush
_3(RuTPU)RU\TPU\col\27515
801 2 _aRU
_b63413507
_c20210316
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/64782
856 4 _uhttps://doi.org/10.3390/s20216140
942 _cCF