000 | 03580nlm1a2200421 4500 | ||
---|---|---|---|
001 | 663237 | ||
005 | 20231030041847.0 | ||
035 | _a(RuTPU)RU\TPU\network\34406 | ||
090 | _a663237 | ||
100 | _a20210202a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aGPU-accelerated ray-casting for 3D fiber orientation analysis _fR. Shkarin, S. N. Shkarina, V. Weinhardt [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 62 tit.] | ||
330 | _aOrientation analysis of fibers is widely applied in the fields of medical, material and life sciences. The orientation information allows predicting properties and behavior of materials to validate and guide a fabrication process of materials with controlled fiber orientation. Meanwhile, development of detector systems for high-resolution non-invasive 3D imaging techniques led to a significant increase in the amount of generated data per a sample up to dozens of gigabytes. Though plenty of 3D orientation estimation algorithms were developed in recent years, neither of them can process large datasets in a reasonable amount of time. This fact complicates the further analysis and makes impossible fast feedback to adjust fabrication parameters. In this work, we present a new method for quantifying the 3D orientation of fibers. The GPU implementation of the proposed method surpasses another popular method for 3D orientation analysis regarding accuracy and speed. The validation of both methods was performed on a synthetic dataset with varying parameters of fibers. Moreover, the proposed method was applied to perform orientation analysis of scaffolds with different fibrous micro-architecture studied with the synchrotron ?CT imaging setup. Each acquired dataset of size 600x600x450 voxels was analyzed in less 2 minutes using standard PC equipped with a single GPU. | ||
461 | _tPLoS One | ||
463 |
_tVol. 15, iss. 7 _v[e0236420; 16 p.] _d2020 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aбиоматериалы | |
610 | 1 | _aориентация | |
610 | 1 | _aволокна | |
701 | 1 |
_aShkarin _bR. _gRoman |
|
701 | 1 |
_aShkarina _bS. N. _cspecialist in the field of material science _cResearch Engineer of Tomsk Polytechnic University _f1989- _gSvetlana Nikolaevna _2stltpush _3(RuTPU)RU\TPU\pers\42498 |
|
701 | 1 |
_aWeinhardt _bV. _gVenera |
|
701 | 1 |
_aSurmenev _bR. A. _cphysicist _cAssociate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences _f1982- _gRoman Anatolievich _2stltpush _3(RuTPU)RU\TPU\pers\31885 |
|
701 | 1 |
_aSurmeneva _bM. A. _cspecialist in the field of material science _cengineer-researcher of Tomsk Polytechnic University, Associate Scientist _f1984- _gMaria Alexandrovna _2stltpush _3(RuTPU)RU\TPU\pers\31894 |
|
701 | 1 |
_aShkarin _bA. _gAndrei |
|
701 | 1 |
_aMikut _bR. _gRalf |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _bНаучно-исследовательский центр "Физическое материаловедение и композитные материалы" _h8209 _2stltpush _3(RuTPU)RU\TPU\col\24957 |
801 | 2 |
_aRU _b63413507 _c20210202 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1371/journal.pone.0236420 | |
942 | _cCF |