000 | 03513nlm1a2200505 4500 | ||
---|---|---|---|
001 | 663377 | ||
005 | 20231030041852.0 | ||
035 | _a(RuTPU)RU\TPU\network\34546 | ||
035 | _aRU\TPU\network\31973 | ||
090 | _a663377 | ||
100 | _a20210209a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aGlancing Angle Deposition of Zn-Doped Calcium Phosphate Coatings by RF Magnetron Sputtering _fK. A. Prosolov, O. A. Belyavskaya, J. Linders [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 62 tit.] | ||
330 | _aZn-substituted hydroxyapatite with antibacterial effect was used in radiofrequency (RF) magnetron deposition of calcium phosphate coating onto Ti- and Si-inclined substrates. The development of surface nanopatterns for direct bacteria killing is a growing area of research. Here, we combined two approaches for possible synergetic antibacterial effect by manufacturing a patterned surface of Zn-doped calcium phosphate using glancing angle deposition (GLAD) technique. A significant change in the coating morphology was revealed with a substrate tilt angle of 80°. It was shown that an increase in the coating crystallinity for samples deposited at a tilt angle of 80° corresponds to the formation of crystallites in the bulk structure of the thin film. The variation in the coating thickness, uniformity, and influence of sputtered species energy on Si substrates was analyzed. Coatings deposited on tilted samples exhibit higher scratch resistance. The coating micro- and nano-roughness and overall morphology depended on the tilt angle and differently affected the rough Ti and smooth Si surfaces. GLAD of complex calcium phosphate material can lead to the growth of thin films with significantly changed morphological features and can be utilized to create self-organized nanostructures on various types of surfaces. | ||
461 | _tCoatings | ||
463 |
_tVol. 9, iss. 4 _v[220, 17 p.] _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aRF magnetron sputtering | |
610 | 1 | _aplasma-assisted deposition | |
610 | 1 | _abiocompatibility | |
610 | 1 | _aGLAD | |
610 | 1 | _aion-substituted apatites | |
610 | 1 | _aмагнетронное распыление | |
610 | 1 | _aплазменное напыление | |
610 | 1 | _aбиосовместимость | |
701 | 1 |
_aProsolov _bK. A. _cPhysicist _cJunior research fellow of Tomsk Polytechnic University _f1991- _gKonstantin Alexandrovich _2stltpush _3(RuTPU)RU\TPU\pers\47153 |
|
701 | 1 |
_aBelyavskaya _bO. A. _gOlga Andreevna |
|
701 | 1 |
_aLinders _bJ. _gJurgen |
|
701 | 1 |
_aLoza _bK. _gKaterina |
|
701 | 1 |
_aPrimak _bO. _gOleg |
|
701 | 1 |
_aMayer _bCh. _gChristian |
|
701 | 1 |
_aRau _bJ. V. _gJulietta |
|
701 | 1 |
_aEpple _bM. K. _gMattias Kristian |
|
701 | 1 |
_aSharkeev _bYu. P. _cphysicist _cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1950- _gYury Petrovich _2stltpush _3(RuTPU)RU\TPU\pers\32228 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20220330 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.3390/coatings9040220 | |
942 | _cCF |