000 | 02281nam1a2200373 4500 | ||
---|---|---|---|
001 | 663438 | ||
005 | 20231030041854.0 | ||
035 | _a(RuTPU)RU\TPU\network\34607 | ||
090 | _a663438 | ||
100 | _a20210211a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aBianchi type-V spinning particle on S2 _fA. V. Galajinsky |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 16 tit.] | ||
330 | _aIntegrable spinning extension of a free particle on S2 is constructed in which spin degrees of freedom are represented by a 3-vector obeying the Bianchi type-V algebra. Generalizations involving a scalar potential giving rise to two quadratic constants of the motion, or external field of the Dirac monopole, or the motion on the group manifold of SU(2) are built. A link to the model of a relativistic spinning particle propagating on the near horizon 7d Myers-Perry black hole background is considered. Implications of the construction in this work for the D(2, 1; ?) superconformal mechanics are discussed. | ||
461 | _tJournal of High Energy Physics | ||
463 |
_tVol. 2020, iss. 3 _v[143, 11 p.] _d2020 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _ablack holes | |
610 | 1 | _aextended supersymmetry | |
610 | 1 | _aintegrable field theories | |
610 | 1 | _aчерные дыры | |
610 | 1 | _aсуперсимметрии | |
700 | 1 |
_aGalajinsky _bA. V. _cDoctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT) _cProfessor of the TPU _f1971- _gAnton Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\27878 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20210319 _gRCR |
|
856 | 4 | _uhttp://earchive.tpu.ru/handle/11683/64786 | |
856 | 4 | _uhttps://doi.org/10.1007/JHEP03(2020)143 | |
942 | _cBK |