000 | 03558nlm1a2200469 4500 | ||
---|---|---|---|
001 | 663465 | ||
005 | 20231030041855.0 | ||
035 | _a(RuTPU)RU\TPU\network\34635 | ||
035 | _aRU\TPU\network\34206 | ||
090 | _a663465 | ||
100 | _a20210212a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aNodularity Control of Spheroid Ductile Cast Iron by Rayleigh Backscattering _fI. O. Bolotina, H. M. V. A. Kroening, D. A. Sednev, I. Vayle |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 13 tit.] | ||
330 | _aSpheroid Ductile Cast Iron finds increasingly industrial use as a high strength material of high fatigue resistance. The material properties can be designed by density, shape and size of the graphite spheres—the nodularity—and the matrix microstructure. Until today, the near surface nodularity cannot be controlled nondestructively to take full advantage of the material quality especially at high loaded surface areas. A viable nondestructive approach we propose is based on ultrasonic backscattering preferably in the Rayleigh regime. First experiments with model samples proved significant contrast to distinguish materials with different graphite morphology and matrices. The claim of our tests is a fast and easy industrial control of nodularity in reference to a validated sample. The results encourage us for the development of a prototype equipment with optimized probe systems and inspection parameters. Quantified acceptance criteria still require systematic tests for optimized parameter settings and probe configurations on more representative samples provided by industry. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tJournal of Nondestructive Evaluation | ||
463 |
_tVol. 39, iss.1 _v[4, 11 p.] _d2020 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _anodularity control | |
610 | 1 | _agraphite morphology | |
610 | 1 | _aspheroid cast iron | |
610 | 1 | _arayleigh scattering | |
610 | 1 | _aultrasonic testing | |
610 | 1 | _aграфиты | |
610 | 1 | _aрэлеевское рассеяние | |
610 | 1 | _aультразвуковой контроль | |
701 | 1 |
_aBolotina _bI. O. _cspecialist in the field of industrial and medical electronics _cAssociate Professor of Tomsk Polytechnic University, Candidate of chemical sciences _f1974- _gIrina Olegovna _2stltpush _3(RuTPU)RU\TPU\pers\34516 |
|
701 | 1 |
_aKroening _bH. M. V. A. _cspecialist in the field of non-destructive testing _cleading researcher of Tomsk Polytechnic University _f1944- _gHans Michael Wilhelm Adolf _2stltpush _3(RuTPU)RU\TPU\pers\36306 |
|
701 | 1 |
_aSednev _bD. A. _cspecialist in the field of non-destructive testing _cassistant of Tomsk Polytechnic University, Associate Scientist _f1989- _gDmitry Andreevich _2stltpush _3(RuTPU)RU\TPU\pers\34514 |
|
701 | 1 |
_aVayle _bI. _gInes |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнститут неразрушающего контроля _bМеждународная научно-образовательная лаборатория неразрушающего контроля _h6776 _2stltpush _3(RuTPU)RU\TPU\col\19961 |
801 | 2 |
_aRU _b63413507 _c20210913 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1007/s10921-019-0645-y | |
942 | _cCF |