000 02768nlm1a2200385 4500
001 663661
005 20231030041902.0
035 _a(RuTPU)RU\TPU\network\34831
035 _aRU\TPU\network\34449
090 _a663661
100 _a20210224a2021 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aPrediction of oil flow rate through orifice flow meters: Optimized machine-learning techniques
_fM. Farsi, B. H. Shojaei, D. Wood [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aFlow measurement is an essential requirement for monitoring and controlling oil movements through pipelines and facilities. However, delivering reliably accurate measurements through certain meters requires cumbersome calculations that can be simplified by using supervised machine learning techniques exploiting optimizers. In this study, a dataset of 6292 data records with seven input variables relating to oil flow through 40 pipelines plus processing facilities in southwestern Iran is evaluated with hybrid machine-learning-optimizer models to predict a wide range of oil flow rates (Qo) through orifice plate meters. Distance-weighted K-nearest-neighbor (DWKNN) and multi-layer perceptron (MLP) algorithms are coupled with artificial-bee colony (ABC) and firefly (FF) swarm-type optimizers. The two-stage ABC-DWKNN Plus MLP-FF model achieved the highest prediction accuracy (root mean square errors = 8.70 stock-tank barrels of oil per day) for oil flow rate through the orifice plates, thereby removing dependence on unreliable empirical formulas in such flow calculations.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tMeasurement
463 _tVol. 174
_v[108943, 17 p.]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
701 1 _aFarsi
_bM.
_gMohammad
701 1 _aShojaei
_bB. H.
_gBarjouei Hossein
701 1 _aWood
_bD.
_gDavid
701 1 _aGhorbani
_bH.
_gHamzeh
701 1 _aMohamadian
_bN.
_gNima
701 1 _aDavoodi
_bSh.
_cspecialist in the field of petroleum engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1990-
_gShadfar
_2stltpush
_3(RuTPU)RU\TPU\pers\46542
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа природных ресурсов
_bОтделение нефтегазового дела
_h8084
_2stltpush
_3(RuTPU)RU\TPU\col\23546
801 2 _aRU
_b63413507
_c20210224
_gRCR
856 4 _uhttps://doi.org/10.1016/j.measurement.2020.108943
942 _cCF