000 | 03487nam1a2200457 4500 | ||
---|---|---|---|
001 | 663748 | ||
005 | 20231030041905.0 | ||
035 | _a(RuTPU)RU\TPU\network\34918 | ||
035 | _aRU\TPU\network\34868 | ||
090 | _a663748 | ||
100 | _a20210303a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aRealizing a Stacking Generalization Model to Improve the Prediction Accuracy of Major Depressive Disorder in Adults _fN. Mahendran, D. R. Vincent, K. Srinivasan [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 47 tit.] | ||
330 | _aMajor depressive disorder (MDD) is a persistent psychiatric mood disorder that is prevalent from a few weeks to a few months, even for years in the worst cases. It causes sadness, hopelessness in the individuals; sometimes, it forces them to hurt themselves. In severe cases, MDD can even lead to the death of the individual. It is challenging to diagnose MDD as it co-occurs with many other disorders (Co-Morbid) and many other reasons such as mobility, lack of motivation, and cost. The way to diagnose MDD is usually high ended that is challenging for the regular clinicians to diagnose. Therefore, to make their work more comfortable, and to predict MDD at the early stages, we have developed an ensemble-based machine learning model. The data collected has been cleaned with a preprocessing technique, and feature selection are performed using wrapper based methods; moreover, in the final step, a stacking based ensemble learning model is implemented to classify the MDD patients. Furthermore, KNN Imputation is implemented for preprocessing, Random Forest-Based Backward Elimination for feature selection and multi-layer perceptron, SVM and Random Forest as low-level learners in stacking generalization model. The results show that the prediction accuracy of the stacking generalization model is superior to the individual classifiers. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tIEEE Access | ||
463 |
_tVol. 8 _v[P. 49509-49522] _d2020 |
||
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aK-nearest neighbors | |
610 | 1 | _amajor depressive disorder | |
610 | 1 | _amultilayer perceptron | |
610 | 1 | _arandom forest | |
610 | 1 | _arandom forest-based feature elimination | |
610 | 1 | _astacking generalization and support vector machine | |
701 | 1 |
_aMahendran _bN. _gNivedhitha |
|
701 | 1 |
_aVincent _bD. R. _gDurai Raj |
|
701 | 1 |
_aSrinivasan _bK. _gKathiravan |
|
701 | 1 |
_aSharma _bV. _gVishal |
|
701 | 1 |
_aDzhayakodi (Jayakody) Arachshiladzh _bD. N. K. _cspecialist in the field of electronics _cProfessor of Tomsk Polytechnic University _f1983- _gDushanta Nalin Kumara _2stltpush _3(RuTPU)RU\TPU\pers\37962 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа информационных технологий и робототехники _bНаучно-образовательный центр "Автоматизация и информационные технологии" _h8422 _2stltpush _3(RuTPU)RU\TPU\col\27515 |
801 | 2 |
_aRU _b63413507 _c20210303 _gRCR |
|
856 | 4 | 0 | _uhttps://doi.org/10.1109/ACCESS.2020.2977887 |
942 | _cBK |