000 04485nlm1a2200433 4500
001 663850
005 20231030041909.0
035 _a(RuTPU)RU\TPU\network\35020
035 _aRU\TPU\network\34842
090 _a663850
100 _a20210312a2020 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aRecent Advances and Future Directions on Underwater Wireless Communications
_fM. F. Ali, D. N. K. Dzhayakodi (Jayakody) Arachshiladzh, Yu. A. Chursin [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 140 tit.]
330 _aMore than 75% of the Earth surface is covered by water in the form of oceans. The oceans are unexplored and very far-fetched to investigate due to distinct phenomenal activities in the underwater environment. Underwater wireless communication (UWC) plays a significant role in observation of marine life, water pollution, oil and gas rig exploration, surveillance of natural disasters, naval tactical operations for coastal securities and to observe the changes in the underwater environment. In this regard, the widespread adoption of UWC has become a vital field of study to envisage various military and commercial applications that have been growing interest to explore the underwater environment for numerous applications. Acoustic, Optical and RF wireless carriers have been chosen to be used for data transmission in an underwater environment. The internet of underwater things (IoUT) and next-generation (5G) networks have a great impact on UWC as they support the improvement of the data rate, connectivity, and energy efficiency. In addition to the potential emerging UWC techniques, assisted by 5G network and improve existing work is also focusing in this study. This survey presents a comprehensive overview of existing UWC techniques, with possible future directions and recommendations to enable the next generation wireless networking systems in the underwater environment. The current project schemes, applications and deployment of latest amended UWC techniques are also discussed. The main initiatives and contributions of current wireless communication schemes in underwater for improving quality of service and quality of energy of the system over long distances are also mentioned.
461 _tArchives of Computational Methods in Engineering
463 _tVol. 27, iss. 5
_v[P. 1379–1412]
_d2020
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aдостижения
610 1 _aбеспроводная связь
610 1 _aподводная среда
610 1 _aэнергия
610 1 _a5G
701 1 _aAli
_bM. F.
_cSpecialist in the field of informatics and computer technology
_cResearch Engineer of Tomsk Polytechnic University
_f1989-
_gMohammad Furqan
_2stltpush
_3(RuTPU)RU\TPU\pers\45861
701 1 _aDzhayakodi (Jayakody) Arachshiladzh
_bD. N. K.
_cspecialist in the field of electronics
_cProfessor of Tomsk Polytechnic University
_f1983-
_gDushanta Nalin Kumara
_2stltpush
_3(RuTPU)RU\TPU\pers\37962
701 1 _aChursin
_bYu. A.
_cspecialist in the field of physical installations
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences
_f1984-
_gYuri Alexandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\31384
701 1 _aAffes
_bS.
_gSofiene
701 1 _aSonkin
_bD. M.
_cspecialist in the field of informatics and computer engineering
_cAssociate Professor of Tomsk Polytechnic University, candidate of technical sciences
_f1986-
_gDmitry Mikhailovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34614
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bНаучно-образовательный центр "Автоматизация и информационные технологии"
_h8422
_2stltpush
_3(RuTPU)RU\TPU\col\27515
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа энергетики
_bОрганизационный отдел
_h8026
_2stltpush
_3(RuTPU)RU\TPU\col\23585
801 2 _aRU
_b63413507
_c20211228
_gRCR
856 4 _uhttps://doi.org/10.1007/s11831-019-09354-8
942 _cCF