000 03441nlm1a2200481 4500
001 663862
005 20231030041910.0
035 _a(RuTPU)RU\TPU\network\35032
090 _a663862
100 _a20210315a2019 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aThree-Dimensional Superconducting Nanohelices Grown by He+-Focused-Ion-Beam Direct Writing
_fR. Cordoba, D. Mailly, R. O. Rezaev [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aNovel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated so far, with dimensions of 100 nm in diameter and aspect ratio up to 65. These nanohelices become superconducting at 7 K and show a large critical magnetic field and critical current density. In addition, given its helical 3D geometry, fingerprints of vortex and phase-slip patterns are experimentally identified and supported by numerical simulations based on the time-dependent Ginzburg–Landau equation. These results can be understood by the helical geometry that induces specific superconducting properties and paves the way for future electronic components, such as sensors, energy storage elements, and nanoantennas, based on 3D compact nanosuperconductors.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tNano Letters
463 _tVol. 19, iss. 12
_v[P. 8597-8604]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _ahelium ion microscope
610 1 _athree-dimensional nanoprinting
610 1 _afocused-ion-beam-induced deposition
610 1 _ananosuperconductors
610 1 _aphase slips
610 1 _aGinzburg-Landau equation
701 1 _aCordoba
_bR.
_gRosa
701 1 _aMailly
_bD.
_gDominique
701 1 _aRezaev
_bR. O.
_cphysicist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences
_f1982-
_gRoman Olegovich
_2stltpush
_3(RuTPU)RU\TPU\pers\31777
701 1 _aSmirnova
_bE. I.
_gEkaterina Ivanovna
701 1 _aSchmidt
_bO. G.
_gOliver
701 1 _aFomin
_bV. M.
_gVladimir Mikhaylovich
701 1 _aZeitler
_bU.
_gUli
701 1 _aGuillamon
_bI.
_gIsabel
701 1 _aSuderow
_bH.
_gHermann
701 1 _aDe Teresa
_bJ. M.
_gJose Maria
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20210315
_gRCR
856 4 _uhttps://doi.org/10.1021/acs.nanolett.9b03153
942 _cCF