000 | 03441nlm1a2200481 4500 | ||
---|---|---|---|
001 | 663862 | ||
005 | 20231030041910.0 | ||
035 | _a(RuTPU)RU\TPU\network\35032 | ||
090 | _a663862 | ||
100 | _a20210315a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aThree-Dimensional Superconducting Nanohelices Grown by He+-Focused-Ion-Beam Direct Writing _fR. Cordoba, D. Mailly, R. O. Rezaev [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aNovel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated so far, with dimensions of 100 nm in diameter and aspect ratio up to 65. These nanohelices become superconducting at 7 K and show a large critical magnetic field and critical current density. In addition, given its helical 3D geometry, fingerprints of vortex and phase-slip patterns are experimentally identified and supported by numerical simulations based on the time-dependent Ginzburg–Landau equation. These results can be understood by the helical geometry that induces specific superconducting properties and paves the way for future electronic components, such as sensors, energy storage elements, and nanoantennas, based on 3D compact nanosuperconductors. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tNano Letters | ||
463 |
_tVol. 19, iss. 12 _v[P. 8597-8604] _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _ahelium ion microscope | |
610 | 1 | _athree-dimensional nanoprinting | |
610 | 1 | _afocused-ion-beam-induced deposition | |
610 | 1 | _ananosuperconductors | |
610 | 1 | _aphase slips | |
610 | 1 | _aGinzburg-Landau equation | |
701 | 1 |
_aCordoba _bR. _gRosa |
|
701 | 1 |
_aMailly _bD. _gDominique |
|
701 | 1 |
_aRezaev _bR. O. _cphysicist _cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1982- _gRoman Olegovich _2stltpush _3(RuTPU)RU\TPU\pers\31777 |
|
701 | 1 |
_aSmirnova _bE. I. _gEkaterina Ivanovna |
|
701 | 1 |
_aSchmidt _bO. G. _gOliver |
|
701 | 1 |
_aFomin _bV. M. _gVladimir Mikhaylovich |
|
701 | 1 |
_aZeitler _bU. _gUli |
|
701 | 1 |
_aGuillamon _bI. _gIsabel |
|
701 | 1 |
_aSuderow _bH. _gHermann |
|
701 | 1 |
_aDe Teresa _bJ. M. _gJose Maria |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20210315 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1021/acs.nanolett.9b03153 | |
942 | _cCF |