000 | 04214nlm1a2200517 4500 | ||
---|---|---|---|
001 | 663891 | ||
005 | 20231030041911.0 | ||
035 | _a(RuTPU)RU\TPU\network\35061 | ||
035 | _aRU\TPU\network\34642 | ||
090 | _a663891 | ||
100 | _a20210316a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrnn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aPreceramic paper-derived SiCf/Ti3Al(Si)C2 and SiCf/Ti3SiC2 MAX-phase based laminates fabricated using spark plasma sintering _fE. B. Kashkarov, N. S. Pushilina, M. S. Syrtanov [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 42 tit.] | ||
330 | _aFor the first time SiCf/Ti3Al(Si)C2 and SiCf/Ti3SiC2 MAX-phase based laminates were fabricated from preceramic papers by spark plasma sintering (SPS). The fibers were coated with a 4-µm layer of carbon by chemical vapor deposition. The phase composition and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The flexural strength of Ti3Al(Si)C2-based laminates with carbon coated SiC fibers was ~990 MPa, which is 20% higher compared to laminates with uncoated fibers. The carbon coating prevents chemical reaction between the fiber layers and MAX-phase based laminates, providing toughening mechanisms associated with fiber detachment and pull-out. No significant reaction of the fibers occurs during the sintering of SiCf/Ti3SiC2 based laminates, which has a flexural strength of ~850 MPa. The layer-by-layer reinforced structure of laminates along with the presence of strengthening phases (TiC and Al2O3) provides toughening mechanisms due to deflection and branching of cracks at macro and micro scales. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tScripta Materialia | ||
463 |
_tVol. 194 _v[113696, 5 p.] _d2021 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _alayered structures | |
610 | 1 | _aMAX phase | |
610 | 1 | _afibers | |
610 | 1 | _aspark plasma sintering | |
610 | 1 | _amechanical properties | |
610 | 1 | _aслоистые конструкции | |
610 | 1 | _aволокна | |
610 | 1 | _aискровое плазменное спекание | |
610 | 1 | _aмеханические свойства | |
701 | 1 |
_aKashkarov _bE. B. _cPhysicist _cAssociate Scientist of Tomsk Polytechnic University, Assistant _f1991- _gEgor Borisovich _2stltpush _3(RuTPU)RU\TPU\pers\34949 |
|
701 | 1 |
_aPushilina _bN. S. _cphysicist _cassociate Professor of Tomsk Polytechnic University, candidate of physico-mathematical Sciences, head of laboratory _f1984- _gNatalia Sergeevna _2stltpush _3(RuTPU)RU\TPU\pers\30838 |
|
701 | 1 |
_aSyrtanov _bM. S. _cphysicist _cengineer of Tomsk Polytechnic University _f1990- _gMaksim Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\34764 |
|
701 | 1 |
_aKrotkevich _bD. _cphysicist _cengineer of Tomsk Polytechnic University _f1990- _gDmitry _2stltpush _3(RuTPU)RU\TPU\pers\46798 |
|
701 | 1 |
_aGotman _bI. _cSpecialist in the field of material science _cLeading researcher of Tomsk Polytechnic University _f1957- _gIrina _2stltpush _3(RuTPU)RU\TPU\pers\37811 |
|
701 | 1 |
_aTravitsky (Travitzky) _bN. _cspecialist in the field of material science _cProfessor of Tomsk Polytechnic University _f1951- _gNakhum _2stltpush _3(RuTPU)RU\TPU\pers\42461 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа ядерных технологий _bОтделение экспериментальной физики _h7865 _2stltpush _3(RuTPU)RU\TPU\col\23549 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа новых производственных технологий _bОтделение материаловедения _h7871 _2stltpush _3(RuTPU)RU\TPU\col\23508 |
801 | 2 |
_aRU _b63413507 _c20210316 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.scriptamat.2020.113696 | |
942 | _cCF |