000 | 02283nlm1a2200409 4500 | ||
---|---|---|---|
001 | 663922 | ||
005 | 20231030041912.0 | ||
035 | _a(RuTPU)RU\TPU\network\35092 | ||
090 | _a663922 | ||
100 | _a20210317a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aSpectral stability estimates of Dirichlet divergence form elliptic operators _fV. M. Goldshtein, V. A. Pchelintsev, A. D. Ukhlov |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 33 tit.] | ||
330 | _aWe study spectral stability estimates of elliptic operators in divergence form −div[A(w)∇g(w)]−div[A(w)∇g(w)] with the Dirichlet boundary condition in non-Lipschitz domains Ω˜⊂CΩ~⊂C. The suggested method is based on the theory of quasiconformal mappings, weighted Sobolev spaces theory and its applications to the Poincaré inequalities. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tAnalysis and Mathematical Physics | ||
463 |
_tVol. 10, iss. 4 _v[74, 25 p.] _d2020 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aelliptic equations | |
610 | 1 | _aSobolev spaces | |
610 | 1 | _aэллиптические уравнения | |
610 | 1 | _aпространство Соболева | |
610 | 1 | _aквазиконформные отображения | |
610 | 1 | _aquasiconformal mappings | |
700 | 1 |
_aGoldshtein _bV. M. _gVladimir Mikhaylovich |
|
701 | 1 |
_aPchelintsev _bV. A. _cmathematician _cSenior Lecturer of Tomsk Polytechnic University, candidate of physico-mathematical Sciences _f1988- _gValery Anatoljevich _2stltpush _3(RuTPU)RU\TPU\pers\35715 |
|
701 | 1 |
_aUkhlov _bA. D. _gAlexander Dadar-oolovich |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bШкола базовой инженерной подготовки _bОтделение математики и информатики _h8031 _2stltpush _3(RuTPU)RU\TPU\col\23555 |
801 | 2 |
_aRU _b63413507 _c20210317 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1007/s13324-020-00425-9 | |
942 | _cCF |