000 | 03109nlm1a2200445 4500 | ||
---|---|---|---|
001 | 663923 | ||
005 | 20231030041912.0 | ||
035 | _a(RuTPU)RU\TPU\network\35093 | ||
035 | _aRU\TPU\network\32318 | ||
090 | _a663923 | ||
100 | _a20210317a2018 k y0engy50 ba | ||
101 | 1 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aMapping of two-dimensional contact problems on a problem with a one-dimensional parametrization _fV. L. Popov |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 83-84 (18 tit.)] | ||
330 | _aWe discuss a possible generalization of the ideas of the method of dimensionality reduction (MDR) for the mapping of two-dimensional contact problems (line contacts). The conventional formulation of the MDR is based on the existence and uniqueness of a relation between indentation depth and contact radius. In two-dimensional contact problems, the indentation depth is not defined unambiguously, thus another parametrization is needed. We show here that the Mossakovskii-Jäger procedure of representing a contact as a series of incremental indentations by flat-ended indenters can be carried out in two-dimensions as well. The only available parameter of this process is, however, the normal load (instead of indentation depth as in the case of threedimensional contacts). Using this idea, a complete solution is obtained for arbitrary symmetric two-dimensional contacts with a compact contact area. The solution includes both the relations of force and half-width of the contact and the stress distribution in the contact area. The procedure is generalized for adhesive contacts and is illustrated by solutions of a series of contact problems. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tPhysical Mesomechanics | ||
463 |
_tVol. 21, iss. 1 _v[P. 80-84] _d2018 |
||
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aline contact | |
610 | 1 | _atwo-dimensional contact | |
610 | 1 | _amethod of dimensionality reduction | |
610 | 1 | _aMossakovskii-Jager superposition principle | |
610 | 1 | _aadhesion | |
610 | 1 | _aадгезия | |
610 | 1 | _aпараметризация | |
610 | 1 | _aразмерности | |
610 | 1 | _aконтактные задачи | |
700 | 1 |
_aPopov _bV. L. _cphysicist _cleading researcher of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1959- _gValentin Leonidovich _2stltpush _3(RuTPU)RU\TPU\pers\35915 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bИнженерная школа новых производственных технологий (ИШНПТ) _bОтделение материаловедения (ОМ) _h7871 _2stltpush _3(RuTPU)RU\TPU\col\23508 |
801 | 2 |
_aRU _b63413507 _c20210317 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1134/S1029959918010113 | |
942 | _cCF |