000 03747nlm1a2200577 4500
001 664059
005 20231030041917.0
035 _a(RuTPU)RU\TPU\network\35243
035 _aRU\TPU\network\32664
090 _a664059
100 _a20210325a2020 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aEfficient Cu2+, Pb2+ and Ni2+ ion removal from wastewater using electrospun DTPA-modified chitosan/polyethylene oxide nanofibers
_fN. S. Surgutskaia, A. Di Martino, J. Zednik [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 56 tit.]
330 _aDiethylenetriaminepentaacetic acid-modified chitosan/polyethylene oxide nanofibers (CS-DTPA/PEO NFs) were developed for enhanced heavy metal ion adsorption. These nanofibers were prepared by electrospinning, and their morphology and structure were investigated by scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR), respectively. The ability of CS-DTPA/PEO NFs to removing copper (Cu2+), lead (Pb2+) and nickel (Ni2+) ions from aqueous solutions was tested at room temperature. The effects of [DTPA]/[NH2] molar ratio, pH and initial concentration of metal ions on their absorption capacity were investigated to optimize process conditions, using pseudo-first and apparent-second-order, Boyd and intraparticle diffusion models to determine the rate-limiting step of metal ions adsorption. In turn, Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherm models were used to describe the experimental data. The results demonstrate a decrease in the ability of CS-DTPA/PEO NFs to adsorb metal ions in the following order: Cu2+>Pb2+>Ni2+. The adsorption equilibrium is established after 90 min from the first contact with solutions containing the metal ions, and data are described using the Langmuir isotherm model. The maximal adsorption capacities of CS-DTPA/PEO NFs for Cu2+ , Pb2+ and Ni2+ions were 177, 142, 56 mg g−1, respectively. The stability and reproducibility of CS-DTPA/PEO NFs were determined after five adsorption-desorption tests.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tSeparation and Purification Technology
463 _tVol. 247
_v[116914, 33 р.]
_d2020
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _achitosan
610 1 _aDTPA
610 1 _aelectrospinning
610 1 _ananofibers
610 1 _aadsorption
610 1 _aheavy metals ions
610 1 _aхитозан
610 1 _aэлектропрядение
610 1 _aнановолокна
610 1 _aадсорбция
610 1 _aионы
610 1 _aтяжелые металлы
701 1 _aSurgutskaia
_bN. S.
_gNatalia
701 1 _aDi Martino
_bA.
_corganic chemist
_cresearch of Tomsk Polytechnic University
_f1984-
_gAntonio
_2stltpush
_3(RuTPU)RU\TPU\pers\39440
701 1 _aZednik
_bJ.
_gJiri
701 1 _aOzaltin
_bK.
_gKadir
701 1 _aLovecka
_bL.
_gLenka
701 1 _aBergerova
_bE. D.
_gEva Domincova
701 1 _aKimmer
_bD.
_gDusan
701 1 _aSvoboda
_bJ.
_gJan
701 1 _aSedlarik
_bV.
_gVladimir
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
801 2 _aRU
_b63413507
_c20210325
_gRCR
856 4 _uhttps://doi.org/10.1016/j.seppur.2020.116914
942 _cCF