000 | 03915nlm1a2200553 4500 | ||
---|---|---|---|
001 | 664324 | ||
005 | 20231030041925.0 | ||
035 | _a(RuTPU)RU\TPU\network\35508 | ||
035 | _aRU\TPU\network\35368 | ||
090 | _a664324 | ||
100 | _a20210408a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aIon-Induced Defects in Graphite: A Combined Kelvin Probe and Raman Microscopy Investigation _fR. D. Rodriguez (Rodriges) Contreras, Z. Khan, Ma Bing [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 38 tit.] | ||
330 | _aCarbon nanomaterials are important for future sensors and electronics. Defects determine the material properties, therefore, it is critical to find new ways to investigate defects at the nanoscale. In this context, Raman spectroscopy (RS) is the tool of choice to study defects in carbon nanomaterials. On the other hand, Kelvin probe force microscopy (KPFM) provides structural and surface potential information at the nanoscale. Here, the authors demonstrate the synergistic application of these methods in the investigation of ion-beam-induced defects in graphite. KPFM and RS imaging are used for visualizing ion-induced defects in a wide range of ion doses from 1010 to 1016 ions cm-2. For the lower range of ion dose, the authors find that RS provides image contrast for the different defect regions in graphite up to a dose of 5•1013 ions cm-2. For higher doses, the sp2 carbon concentration becomes so small that the Raman spectra get dominated by broad amorphous carbon bands. For this dose range, the KPFM contrast allows the defective regions to be differentiated. This contrast in KPFM originates from sp3 carbons that act as charge traps. The results show that KPFM and Raman microscopy make a powerful and necessary combination for studying the spatial distribution of defects in carbon. | ||
461 |
_tPhysica Status Solidi A _oJournal |
||
463 |
_tVol. 216, iss. 19 _v[1900055, 8 p.] _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aдефекты | |
610 | 1 | _aграфиты | |
610 | 1 | _aмикроскопия | |
610 | 1 | _aуглеродные наноматериалы | |
610 | 1 | _aрамановская спектроскопия | |
701 | 1 |
_aRodriguez (Rodriges) Contreras _bR. D. _cVenezuelan physicist, doctor of science _cProfessor of Tomsk Polytechnic University _f1982- _gRaul David _2stltpush _3(RuTPU)RU\TPU\pers\39942 |
|
701 | 1 |
_aKhan _bZ. _gZoheb |
|
701 | 0 | _aMa Bing | |
701 | 1 |
_aMukherjee _bA. _gAshutosh |
|
701 | 1 |
_aMeszmer _bP. _gPeter |
|
701 | 1 |
_aKalbacova _bJa. _gJana |
|
701 | 1 |
_aGarratt _bE. _gElias |
|
701 | 1 |
_aHarsha _bS. _gShah |
|
701 | 1 |
_aHeilmann _bJ. _gJens |
|
701 | 1 |
_aHight Walker _bA. R. _gAngela |
|
701 | 1 |
_aWunderle _bB. _gBernhard |
|
701 | 1 |
_aSheremet _bE. S. _cphysicist _cProfessor of Tomsk Polytechnic University _f1988- _gEvgeniya Sergeevna _2stltpush _3(RuTPU)RU\TPU\pers\40027 |
|
701 | 1 |
_aHietschold _bM. _gMichael |
|
701 | 1 |
_aZahn _bD. R. T. _gDietrich |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа новых производственных технологий _bОтделение материаловедения _h7871 _2stltpush _3(RuTPU)RU\TPU\col\23508 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _c(2017- ) _h8120 _2stltpush _3(RuTPU)RU\TPU\col\23537 |
801 | 2 |
_aRU _b63413507 _c20210409 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1002/pssa.201900055 | |
942 | _cCF |