000 03915nlm1a2200553 4500
001 664324
005 20231030041925.0
035 _a(RuTPU)RU\TPU\network\35508
035 _aRU\TPU\network\35368
090 _a664324
100 _a20210408a2019 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aIon-Induced Defects in Graphite: A Combined Kelvin Probe and Raman Microscopy Investigation
_fR. D. Rodriguez (Rodriges) Contreras, Z. Khan, Ma Bing [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 38 tit.]
330 _aCarbon nanomaterials are important for future sensors and electronics. Defects determine the material properties, therefore, it is critical to find new ways to investigate defects at the nanoscale. In this context, Raman spectroscopy (RS) is the tool of choice to study defects in carbon nanomaterials. On the other hand, Kelvin probe force microscopy (KPFM) provides structural and surface potential information at the nanoscale. Here, the authors demonstrate the synergistic application of these methods in the investigation of ion-beam-induced defects in graphite. KPFM and RS imaging are used for visualizing ion-induced defects in a wide range of ion doses from 1010 to 1016 ions cm-2. For the lower range of ion dose, the authors find that RS provides image contrast for the different defect regions in graphite up to a dose of 5•1013 ions cm-2. For higher doses, the sp2 carbon concentration becomes so small that the Raman spectra get dominated by broad amorphous carbon bands. For this dose range, the KPFM contrast allows the defective regions to be differentiated. This contrast in KPFM originates from sp3 carbons that act as charge traps. The results show that KPFM and Raman microscopy make a powerful and necessary combination for studying the spatial distribution of defects in carbon.
461 _tPhysica Status Solidi A
_oJournal
463 _tVol. 216, iss. 19
_v[1900055, 8 p.]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aдефекты
610 1 _aграфиты
610 1 _aмикроскопия
610 1 _aуглеродные наноматериалы
610 1 _aрамановская спектроскопия
701 1 _aRodriguez (Rodriges) Contreras
_bR. D.
_cVenezuelan physicist, doctor of science
_cProfessor of Tomsk Polytechnic University
_f1982-
_gRaul David
_2stltpush
_3(RuTPU)RU\TPU\pers\39942
701 1 _aKhan
_bZ.
_gZoheb
701 0 _aMa Bing
701 1 _aMukherjee
_bA.
_gAshutosh
701 1 _aMeszmer
_bP.
_gPeter
701 1 _aKalbacova
_bJa.
_gJana
701 1 _aGarratt
_bE.
_gElias
701 1 _aHarsha
_bS.
_gShah
701 1 _aHeilmann
_bJ.
_gJens
701 1 _aHight Walker
_bA. R.
_gAngela
701 1 _aWunderle
_bB.
_gBernhard
701 1 _aSheremet
_bE. S.
_cphysicist
_cProfessor of Tomsk Polytechnic University
_f1988-
_gEvgeniya Sergeevna
_2stltpush
_3(RuTPU)RU\TPU\pers\40027
701 1 _aHietschold
_bM.
_gMichael
701 1 _aZahn
_bD. R. T.
_gDietrich
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа новых производственных технологий
_bОтделение материаловедения
_h7871
_2stltpush
_3(RuTPU)RU\TPU\col\23508
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
801 2 _aRU
_b63413507
_c20210409
_gRCR
856 4 _uhttps://doi.org/10.1002/pssa.201900055
942 _cCF