000 04602nlm1a2200529 4500
001 664465
005 20231030041930.0
035 _a(RuTPU)RU\TPU\network\35649
035 _aRU\TPU\network\35014
090 _a664465
100 _a20210414a2021 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aEnhanced properties of poly(ε‐caprolactone)/polyvinylpyrrolidone electrospun scaffolds fabricated using 1,1,1,3,3,3‐hexafluoro‐2‐propanol
_fS. I. Goreninsky (Goreninskii), N. V. Danilenko, E. N. Bolbasov [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 40 tit.]
330 _aPoly(ε‐caprolactone)/polyvinylpyrrolidone (PCL/PVP) scaffolds with various composition were fabricated from 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) solution using the same electrospinning parameters in order to reveal the effect of polymer ratio on the material properties. The obtained materials were characterized using scanning electron microscopy, contact angle measurements, X‐ray diffraction, Fourier‐transformed infrared spectroscopy, and tensile testing. The strengthening effect of PVP was observed: Young modulus of PCL/PVP scaffold with 50/50 polymer ratio was found at 105.4 ± 8.4 MPa which is six times higher comparing to those of PCL scaffold. PVP‐containing scaffolds were extremely hydrophilic with PVP concentration of 5 wt% (vs. 25 wt% in previous reports) leading to full wetting of the material. in vitro studies showed an improved viability of HeLa cells cultured with the composites containing higher concentrations of PVP. Owing to the application of HFIP, PCL‐based materials were loaded with cyclophosphamide for the first time and the PVP‐containing materials demonstrated the intensified initial release of the model compound. Utilizing HFIP for the fabrication of PCL/PVP scaffolds significantly widens their application for drug delivery systems due to a good solubility of proteins, drugs, and other biologically active compounds in this solvent.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tJournal of Applied Polymer Science
463 _tVol. 138, iss. 23
_v[app50535, 11 p.]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _abiodegradable polymers
610 1 _acontrollable release
610 1 _adrug delivery
610 1 _aelectrospinning
610 1 _aбиоразлагаемые полимеры
610 1 _aэлектроспиннинг
701 1 _aGoreninsky (Goreninskii)
_bS. I.
_cchemist
_cengineer of Tomsk Polytechnic University
_f1993-
_gSemen Igorevich
_2stltpush
_3(RuTPU)RU\TPU\pers\40080
701 1 _aDanilenko
_bN. V.
_cchemical engineer
_cResearch Engineer, Tomsk Polytechnic University
_f1992-
_gNadezhda Viktorovna
_2stltpush
_3(RuTPU)RU\TPU\pers\37547
701 1 _aBolbasov
_bE. N.
_cphysicist
_cAssociate Scientist of Tomsk Polytechnic University, Candidate of Sciences
_f1981-
_gEvgeny Nikolaevich
_2stltpush
_3(RuTPU)RU\TPU\pers\30857
701 1 _aEvtina
_bA. A.
_gAnastasiya Alekseevna
701 1 _aBuldakov
_bA. A.
_gMikhail Aleksandrovich
701 1 _aCherdyntseva
_bN. V.
_gNadezhda Viktorovna
701 1 _aSakib
_bM.
_gMukhkhamad
701 1 _aBeshchasna
_bN.
_gNatalia
701 1 _aOpitz
_bJ.
_gJorg
701 1 _aFilimonov
_bV. D.
_cRussian chemist
_cProfessor of the TPU
_f1945-
_gViktor Dmitrievich
_2stltpush
_3(RuTPU)RU\TPU\pers\26423
701 1 _aTverdokhlebov
_bS. I.
_cphysicist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical science
_f1961-
_gSergei Ivanovich
_2stltpush
_3(RuTPU)RU\TPU\pers\30855
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа ядерных технологий
_bНаучно-образовательный центр Б. П. Вейнберга
_h7866
_2stltpush
_3(RuTPU)RU\TPU\col\23561
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа новых производственных технологий
_bНаучно-образовательный центр Н. М. Кижнера
_h7872
_2stltpush
_3(RuTPU)RU\TPU\col\23556
801 2 _aRU
_b63413507
_c20210414
_gRCR
856 4 _uhttps://doi.org/10.1002/app.50535
942 _cCF