000 02336nlm1a2200325 4500
001 664598
005 20231030041935.0
035 _a(RuTPU)RU\TPU\network\35782
090 _a664598
100 _a20210429a2020 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aFive-Body Integral Equations and Solution of the η−4Nη Problem
_fO. V. Kolesnikov, A. I. Fiks (Fix)
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 34 tit.]
330 _aThe Alt-Grassberger-Sandhas equations for the five-body problem are solved for the case of the driving two-body potentials limited to s-waves. The separable pole expansion method is employed to convert the equations into the effective quasi-two-body form. Numerical results are presented for five identical bosons as well as for the system containing an ηη-meson and four nucleons. Accuracy of the separable expansion is investigated. It is shown that both in (1+4)(1+4) and (2+3)(2+3) fragmentation, the corresponding eigenvalues decrease rather rapidly, what, combined with the alternation of their signs, leads to rather good convergence of the results. For the η−4Nη−4N system the crucial influence of the subthreshold behavior of the ηNηN amplitude on the ηη-nuclear low-energy interaction is discussed.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tFew-Body Systems
463 _tVol. 61, iss. 2
_v[18, 10 p.]
_d2020
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
700 1 _aKolesnikov
_bO. V.
_gOleg Valerjevich
701 1 _aFiks (Fix)
_bA. I.
_cmathematician
_cProfessor of Tomsk Polytechnic University, doctor of physico-mathematical Sciences
_f1968-
_gAlexander Ivanovich
_2stltpush
_3(RuTPU)RU\TPU\pers\33830
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20210429
_gRCR
856 4 _uhttps://doi.org/10.1007/s00601-020-01551-7
942 _cCF