000 03931nam1a2200481 4500
001 664623
005 20231030041936.0
035 _a(RuTPU)RU\TPU\network\35807
090 _a664623
100 _a20210511a2021 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aPhase formation, structure and properties of light-weight aluminosilicate proppants based on clay-diabase and clay-granite binary mixes
_fT. V. Vakalova, L. P. Devyashina, Sh. M. Sharafeev, N. P. Sergeev
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 61 tit.]
330 _aOne of the drawbacks of fusible clays is the narrow sintering interval due to a sharp increase in the amount of iron-silicate melt at a temperature of 1000–1100 °C, which hardens in the form of a glass phase upon cooling. This leads to a relatively low mechanical strength of the calcined samples and causes the danger of melting the granular material surface from such clays during the firing process. To increase the strength of samples of fusible clays, the influence of diabase and granitoid rocks was considered. It was found that the strengthening effect of diabase and granitoid rock additives in an amount of 20–50% in a mixture with fusible clay is due to an increase of total content of the crystalline phase (mullite, cristobalite and residual quartz) from 18–20% in clays without additives to 22–28 % - in mixtures with diabase and to 28–34% - with granitoid additives) at a temperature of 1050–1100 °C. This increase is due to the activation of synthesis processes of secondary mullite and crystallization from alkali-rich feldspar melt of amorphous silica, released from the structure of clay minerals. The established influence of the igneous rocks used made it possible to develop compositions and propose process flow sheet for producing aluminosilicate proppants based on fusible clays. The use of granitoid and diabase rocks in an amount of 20–70% with fusible clays produces lightweight aluminosilicate proppants with bulk density of 1.40–1.46 g/cm3 at temperature range of 1050–1100 °C, which can endure destructive pressures up to 34.5–52 MPa.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tCeramics International
463 _tVol. 47, iss. 11
_v[P. 1582-1592]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _afusible clay
610 1 _agranitoid
610 1 _adiabase
610 1 _asintering
610 1 _amechanical strength
610 1 _aproppant
610 1 _aлегкоплавкие глины
610 1 _aгранитоиды
610 1 _aдиабазы
610 1 _aспекание
610 1 _aмеханическая сила
701 1 _aVakalova
_bT. V.
_cChemical Engineer
_cProfessor of Tomsk Polytechnic University, Doctor of Technical Sciences
_f1956-
_gTatyana Viktorovna
_2stltpush
_3(RuTPU)RU\TPU\pers\29338
701 1 _aDevyashina
_bL. P.
_cChemical engineer
_cExpert of Tomsk Polytechnic University
_f1989-
_gLarisa Pavlovna
_2stltpush
_3(RuTPU)RU\TPU\pers\39306
701 1 _aSharafeev
_bSh. M.
_cchemical engineer
_cEngineer of Tomsk Polytechnic University
_f1994-
_gSharif Mnirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\46833
701 1 _aSergeev
_bN. P.
_gNikolay Petrovich
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа новых производственных технологий
_bНаучно-образовательный центр Н. М. Кижнера
_h7872
_2stltpush
_3(RuTPU)RU\TPU\col\23556
801 2 _aRU
_b63413507
_c20210511
_gRCR
856 4 _uhttps://doi.org/10.1016/j.ceramint.2021.02.092
942 _cBK