000 | 03601nlm1a2200421 4500 | ||
---|---|---|---|
001 | 664736 | ||
005 | 20231030041940.0 | ||
035 | _a(RuTPU)RU\TPU\network\35920 | ||
090 | _a664736 | ||
100 | _a20210517a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aGB | ||
135 | _adrnn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aForming the Convective Flows and a Cluster of Particles under Spot Heating _fS. Ya. Misyura, R. I. Egorov, V. S. Morozov, A. S. Zaitsev |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 48 tit.] | ||
330 | _aThe behavior of self-organization of convective flows in a thin layer of liquid under point (local) heating is investigated experimentally. The interaction of thermocapillary and thermogravitational-free convection can lead both to self-organization of a cluster of micro-vortices in the form of hexagonal structures and to its partial disintegration. Correlation analysis of the velocity field shows that the characteristic convection scales change continuously over time. The largest size of the vortex flow corresponds to the layer diameter (20 mm); the integral convection scale (2.5 mm) characterizes the established interaction of vortex structures in a wide range of sizes; and the dimensions of hexagonal convective cells (80–100 µm) show the lower limit of the characteristic scale of vortex structures. The observed flow macrostructure is determined by the complex nonlinear interaction of vortices of the specified scales. The resulting value of the average integral convection scale can be effectively used to predict the convection velocity. | ||
461 | _tNanoscale and Microscale Thermophysical Engineering | ||
463 |
_tVol. 25, iss. 1 _v[P. 46-63] _d2021 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aBenard-marangoni Convection | |
610 | 1 | _aself-assembly | |
610 | 1 | _amicro-particles | |
610 | 1 | _aliquid Interface | |
610 | 1 | _alaser heating | |
701 | 1 |
_aMisyura _bS. Ya. _cspecialist in the field of power engineering _cleading researcher of Tomsk Polytechnic University, candidate of technical sciences _f1964- _gSergey Yakovlevich _2stltpush _3(RuTPU)RU\TPU\pers\39641 |
|
701 | 1 |
_aEgorov _bR. I. _cspecialist in the field of heat and power engineering _cResearcher of Tomsk Polytechnic University, candidate of physical and mathematical sciences _f1980- _gRoman Igorevich _2stltpush _3(RuTPU)RU\TPU\pers\36601 |
|
701 | 1 |
_aMorozov _bV. S. _gVladimir Sergeevich |
|
701 | 1 |
_aZaitsev _bA. S. _cspecialist in the field of heat and power engineering _cAssociate Professor, highly qualified worker of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences _f1991- _gAleksandr Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\36040 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) _h8025 _2stltpush _3(RuTPU)RU\TPU\col\23504 |
801 | 2 |
_aRU _b63413507 _c20220310 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1080/15567265.2020.1860170 | |
942 | _cCF |