000 04498nlm1a2200541 4500
001 664816
005 20231030041942.0
035 _a(RuTPU)RU\TPU\network\36001
035 _aRU\TPU\network\12643
090 _a664816
100 _a20210519a2017 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aModelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation
_fE. M. Dutova, A. N. Nikitenkov, V. D. Pokrovsky [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 64 tit.]
330 _aGeneric hydrochemical modelling of a grantoid-groundwater system, using the Russian software "HydroGeo", has been carried out with an emphasis on simulating the accumulation of uranium in the aqueous phase. The baseline model run simulates shallow granitoid aquifers (U content 5 ppm) under conditions broadly representative of southern Norway and southwestern Siberia: i.e. temperature 10 °C, equilibrated with a soil gas partial CO2 pressure (PCO2, open system) of 10-2.5 atm. and a mildly oxidising redox environment (Eh = +50 mV). Modelling indicates that aqueous uranium accumulates in parallel with total dissolved solids (or groundwater mineralisation M - regarded as an indicator of degree of hydrochemical evolution), accumulating most rapidly when M = 550-1000 mg L-1. Accumulation slows at the onset of saturation and precipitation of secondary uranium minerals at M = c. 1000 mg L-1 (which, under baseline modelling conditions, also corresponds approximately to calcite saturation and transition to Na-HCO3 hydrofacies). The secondary minerals are typically "black" uranium oxides of mixed oxidation state (e.g. U3O7 and U4O9). For rock U content of 5-50 ppm, it is possible to generate a wide variety of aqueous uranium concentrations, up to a maximum of just over 1 mg L-1, but with typical concentrations of up to 10 μg L-1 for modest degrees of hydrochemical maturity (as indicated by M). These observations correspond extremely well with real groundwater analyses from the Altai-Sayan region of Russia and Norwegian crystalline bedrock aquifers. The timing (with respect to M) and degree of aqueous uranium accumulation are also sensitive to Eh (greater mobilisation at higher Eh), uranium content of rocks (aqueous concentration increases as rock content increases) and PCO2 (low PCO2 favours higher pH, rapid accumulation of aqueous U and earlier saturation with respect to uranium minerals).
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tJournal of Environmental Radioactivity
463 _tVol. 178-179
_v[P. 63-76]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _agroundwater
610 1 _ahydrochemical modelling
610 1 _amineralisation
610 1 _anatural uranium
610 1 _aore
610 1 _asolubility
610 1 _aгрунтовые воды
610 1 _aмоделирование
610 1 _aминерализация
610 1 _aприродный уран
610 1 _aруды
610 1 _aрастворимость
701 1 _aDutova
_bE. M.
_chydrogeologist
_cProfessor of Tomsk Polytechnic University, Doctor of geological and mineralogical sciences
_f1956-
_gEkaterina Matveevna
_2stltpush
_3(RuTPU)RU\TPU\pers\31021
701 1 _aNikitenkov
_bA. N.
_cphysicist, hydrogeologist
_cassociate Professor of Tomsk Polytechnic University, candidate of geological and mineralogical Sciences
_f1983-
_gAleksey Nikolaevich
_2stltpush
_3(RuTPU)RU\TPU\pers\33263
701 1 _aPokrovsky
_bV. D.
_cSpecialist in the field of higher professional education
_cAnalyst of the Tomsk Polytechnic University
_f1989-
_gVitaly Dmitrievich
_2stltpush
_3(RuTPU)RU\TPU\pers\32204
701 1 _aBanks
_bD.
_gDavid
701 1 _aFrengstad
_bB. S.
_gBjorn
701 1 _aParnachyov
_bV. P.
_gValery Petrovich
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа природных ресурсов
_bОтделение геологии
_h8083
_2stltpush
_3(RuTPU)RU\TPU\col\23542
801 2 _aRU
_b63413507
_c20210519
_gRCR
856 4 _uhttps://doi.org/10.1016/j.jenvrad.2017.07.016
942 _cCF